
ASTR 702

Stellar Models (Chapter 5)

This chapter of the book deals with some analytical solutions to the equations of stellar
structure that were developed before the advent of powerful computers. As such, these
solutions feel a little outdated, but they do lead to important equations for the Eddington
Limit and the Chandrasekhar Mass.

In equilibrium, our equations are:
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or in terms of mass
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We also have equations for pressure, opacity, and heat generation:

P =
R

µI

ρT + Pe + 1/3aT 4 (9)

κ = κ0ρ
aT b (10)

q = q0ρ
mT n (11)

Finally, we have the boundary conditions of m = 0 at r = 0, P = 0 at r = R.

Polytropic Models

We know that pressure depends on temperature, and that relationship is what links Equa-
tions 1-2 to Equations 3-4. If we assume, however, that the pressure does not depend on
the temperature, but instead only on the density, we have “polytropic” solutions. They are
also called “homology relations.” These solutions will make use of the polytropic equation
we had earlier:

P = Kργ , (12)

1



with γ = 1 + 1/n.

We had before two polytropes, one for degenerate electrons and one for degenerate relativistic
electrons:

Pe,deg = K ‘
1

(
ρ

µe

)5/3

, (13)

with K ‘
1 = 1.00× 107m4 kg2/3 s−2 and

Pe,deg = K ‘
2

(
ρ

µe

)4/3

, (14)

with K ‘
2 = 1.24× 1010m3 kg−1/3 s−1.

If we multiply the equation of hydrostatic equilibrium by r2/ρ and differentiate with respect
to r, we find

d
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(
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ρ

dP

dr

)
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(15)

We can then substitute in mass conservation to get

1

r2
d

dr

(
r2

ρ

dP
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)
= −4πGρ . (16)

and finally if we substitute in the polytropic equation we get

(n+ 1)K

4πGn

1

r2
d

dr

(
r2

ρ(n−1)/n

dρ

dr

)
= −ρ (17)

The solution for ρ(r) is called a polytrope. We need two boundary conditions: ρ = 0 at
r = R and dρ/dr = 0 at r = 0. Therefore, our polytrope relation tells us that ρ is defined
by just three parameters: K,n, and R.

In what follows next, we will define some auxiliary variables to reduce this expression. First,
we will define θ:

ρ = ρcθ
n , (18)

and 0 ≤ θ ≤ 1. θ therefore tells us the difference between ρ and ρc. Substituting in, we find[
(n+ 1)K

4πGρ
(n−1)/n
c

]
1

r2
d

dr

(
r2
dθ

dr

)
= −θn (19)

We know that the RHS has no units. The term in brackets must have dimensions of length
squared, and be a constant. We can therefore write

α2 =

[
(n+ 1)K

4πGρ
(n−1)/n
c

]
, (20)
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so that α has units of length. We can therefore define

ξ = r/α . (21)

The meaning of these auxiliary variables is a bit hard to follow, so let’s review. θ tells us
how ρ differs from ρc and varies from 0 to 1. α is a constant with dimensions of length, and
ξ tells us how r and α are related. Mashing this all together, we get the famous Lane-Emden
equation:

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn . (22)

The boundary equations on this say that θ = 1 at ξ = 0 (r = 0 and ρ = ρc) and dθ/dξ = 0
at ξ = 0 (dρ/dr = 0 at r = 0).

Whew! We can integrate the Lane-Emden equation for a given n. These solutions show that
if n is large, the density peaks more strongly in the center.

We can use these relations to rewrite the mass of a polytropic star:

M =

∫ R

0

4πr2ρdr = 4πα3ρc

∫ ξ1

0

ξ2θndξ , (23)

where ξ1 = R/α. Using the Lane-Emden equation, we can write

M = 4πα3ρc

∫ ξ1

0

d

dξ

(
ξ2
dθ

dξ

)
dξ = 4πα3ρcξ

2
1

(
dθ

dξ

)
|ξ1 (24)

But that’s not all! Let’s make some more variables! As we did for θ, let’s define how far the
central density is from the average density. This parameter, Dn, varies with n.

ρc = Dnρ̄ = Dn
M

4π/3R3
, (25)

and therefore

Dn = −
[
3

ξ1

(
dθ

dξ

)
|ξ1
]−1

(26)

We can then eliminate ρc and substitute α to get a relationship between mass and radius
that only depends on the constant Mn = −ξ2(dθ/dξ) and Rn = ξ1:(

GM

Mn

)n−1(
R

Rn

)3−n

=
[(n+ 1)K]

4πG
. (27)

Finally, we can get a relationship between the central pressure and our terms:

Pc =
(4πG)1/n

n+ 1

(
GM

Mn

)(n−1)/n(
R

Rn

)(3−n)/n

ρ(n+1)/n
c (28)

and if we collect all coefficients that depend on n into yet anotehr variable Bn,

Pc = (4π)1/3BnGM2/3ρ4/3c . (29)

OK, that’s quite enough! The amazing thing about these relations is that they all depend
on the polytropic index n. If we can determine that, we can solve for relations of all the
other stellar properties.
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The Chandrasekhar Mass

One application of the polytropic models that we can assume best represents reality is for
degenerate stars. We said before that for these stars there is no dependence of the pressure
on the temperature.

If we take (
GM

Mn

)n−1(
R

Rn

)3−n

=
[(n+ 1)K]

4πG
, (30)

and n = 1.5 (γ = 5/3) for degenerate material, we find R ∝ M−1/3. The density ρ ∝
MR−3 ∝ M2 . Therefore, for degenerate stars, as the mass goes up, the radius goes down
and the density goes up. In other words, higher mass white dwarfs are smaller.

If the density is high enough, the electrons are relativistic, and n = 3 (γ = 4/3). This has a

special form, since
(

R
Rn

)3−n

= 1 and therefore the mass is independent of radius:

M = 4πM3

(
K

πG

)3/2

. (31)

Therefore, the only solution for M depends on the value of K. If we take K = K
′
2 from

before, we find

MCh =
M3

√
1.5

4π

(
hc

Gm
4/3
H

)3/2

µ−2
e = 5.83µ−2

e M⊙ (32)

Reasonable values of µe range from µe = 2 (He, C, O) to µe = 2.15 (Fe), which gives us
1.46 M⊙ to 1.26 M⊙. This is the maximum mass of a white dwarf.

The Eddington Luminosity

I have stated a few times now, without evidence, that stars with masses M ≳ 100 M⊙
will blow themselves apart. If we substitute in the expression for radiation pressure, Prad =
1/3aT 4 , and then substitute hydrostatic equilibrium into the temperature gradient equation,
we find

dPrad

dP
=

κF

4πcGm
(33)

Since P = Pgas + Prad, dPrad < dP and

κF < 4πcGm , (34)

Near the center of the star, F (0) = 0 so F/m → qc as m → 0 where qc = q(m = 0).
Therefore, radiative energy transfer can only accommodate:

qc <
4πcG

κ
. (35)

If we then substitute in for q,

L <
4πcGM

κ
(36)
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and the so-called maximum luminosity before hydrostatic equilibrium is violated

LEdd =
4πcGM

κ
= 3.2× 104

(
M

M⊙

)(κes

κ

)
L⊙ (37)

When combined with the mass-luminosity relation, there is an upper limit to the mass of a
main sequence star.
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