Stellar Midterm 2 Review Topics

Equations to memorize

$$P = K \rho^{\gamma}, \tag{1}$$

with $\gamma = 1 + 1/n$ and different values of K for different equations of state.

Lane-Emden is below, but I expect you to know

$$\rho = \rho_c \theta^n \tag{2}$$

$$\xi = r/\alpha \,. \tag{3}$$

Equations I would give you

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n \,. \tag{4}$$

$$\left| \frac{dT}{dr} \right|_{*} < \left(\frac{\gamma_{a} - 1}{\gamma_{a}} \right) \frac{T}{P} \left| \frac{dP}{dr} \right|_{*} \tag{5}$$

$$M_{\rm Ch} = \frac{M_3 \sqrt{1.5}}{4\pi} \left(\frac{hc}{Gm_H^{4/3}}\right)^{3/2} \mu_e^{-2} = 5.83 \mu_e^{-2} M_{\odot}$$
 (6)

$$L < \frac{4\pi cGM}{\kappa} \tag{7}$$

$$M_J = \left(\frac{5kT}{G\mu}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2} \tag{8}$$

$$R_J = \sqrt{\frac{15kT}{4\pi G\mu\rho}}. (9)$$

Topics

Stellar Models

Polytropic models with values for γ and n Meaning of γ Lane-Emden relation Chandrasekhar mass Eddington luminosity

Stellar Stability

Dynamical Equilibrium
Thermal Equilibrium
When do we have instabilities?
Convection and when it dominates over radiation

The Sun

Basic properties including properties and effects of the magnetic field

Stellar Evolution

Star Formation process Jeans radius and mass from hydrostatic equilibrium and Virial Bonner-Ebert spheres Hayashi tracks The initial mass function Main sequence evolution The log T-log ρ plane Post-main sequence evolution for > 8 and $< 8 M_{\odot}$ stars including elements produced and tracks on H-R diagram