
Stellar
Stellar Models

We can solve the equations of stellar structure analytically, after some assump-
tions. This method was developed before the advent of powerful computers.
As such, these solutions feel a little outdated, but they do lead to important
equations for the Eddington Limit and the Chandrasekhar Mass, so let’s divein.

In equilibrium, our equations are:

dP

dr
= −

Gmρ

r2
(1)

dm

dr
= 4πr2ρ (2)

dT

dr
= −

3

4c

κ̄ρ

T3
F

4πr2
(3)

dF

dr
= 4πr2ρq (4)

or in terms of mass
dP

dm
= −

Gm

4πr4
(5)

dr

dm
=

1

4πr2ρ
(6)

dT

dm
= −

3

4c

κ̄

T3
F

4πr2

2

(7)

dF

dm
= q (8)

We also have equations for the equation of state, opacity, and heat generation:

P =
k

μmH
ρT + Pe + 1/3T4 (9)

κ = κ0ρTb (10)

q = q0ρmT , (11)

where Pe could be from thermal, degenerate, or relativistic degenerate. Finally,
we have the boundary conditions of m = 0 at r = 0, P = 0 at r = R. Regardless
of our method (analytical or computational), these are the equations that we
need to use.

1



Polytropic Models

Before computers, astronomers had to derive expressions analytically, and the
polytropic models are a relic from that time. They are still useful, however, for
building an understanding of the physics.

We know that pressure depends on temperature, and that relationship is what
links Equations 1-2 to Equations 3-4. This dependence, however, makes de-
riving analytical expressions appropriate for stellar interiors difficult. If we as-
sume that the pressure does not depend on the temperature but instead only
on the density (as we have seen for degenerate gas), OR that the temperature
and pressure are related by T ∝ ρ1/n for some index n, we have “polytropic”
solutions. These solutions will make use of the polytropic equation we had
earlier:

P = Kρ1+1/n = Kργ , (12)

with γ = 1 + 1/n.

We had before two polytropes, one for degenerate electrons and one for de-
generate relativistic electrons:

Pe,deg = K ‘
1

�

ρ

μe

�5/3

, (13)

with K ‘
1 = 1.00 × 107m4 kg2/3 s−2 and

Pe,deg = K ‘
2

�

ρ

μe

�4/3

, (14)

with K ‘
2 = 1.24 × 1010m3 kg−1/3 s−1.

We can derive the structure of a polytrope if we multiply the equation of hy-
drostatic equilibrium by r2/ρ and differentiate with respect to r. We find

d

dr

�

r2

ρ

dP

dr

�

= −G
dm

dr
(15)

We can then substitute in mass conservation to get

1

r2
d

dr

�

r2

ρ

dP

dr

�

= −4πGρ . (16)

We know from the polytropic equation 12

dP

dr
= K(1 + 1/n)ρ1/n

dρ

dr
=
K(n + 1)

n
ρ1/n

dρ

dr
(17)
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and finally if we substitute in we get

1

4πG

(n + 1)K

n

1

r2
d

dr

�

r2

ρ(n−1)/n
dρ

dr

�

= −ρ (18)

The solution for ρ(r) is called a polytrope. We need two boundary conditions:
ρ = 0 at r = R and dρ/dr = 0 at r = 0. Therefore, our polytrope relation tells us
that ρ is defined by just three parameters: K, n,nd R.

OK, so far, so good, but the choice of variables in the following will take some
getting used to. We will define some auxiliary variables to reduce this expres-
sion. First, we will define θ:

ρ = ρcθn , (19)

and put bounds on θ: 0 ≤ θ ≤ 1. θ therefore tells us the difference between ρ
and ρc. Substituting in, after some manipulation we find

�

(n + 1)K

4πGρ(n−1)/nc

�

1

r2
d

dr

�

r2
dθ

dr

�

= −θn (20)

We know that the RHS has no units. The term in brackets must have dimen-
sions of length squared, and be a constant. We can therefore write

α2 =

�

(n + 1)K

4πGρ(n−1)/nc

�

, (21)

so that α has units of length. We can define

ξ = r/α . (22)

The meaning of these auxiliary variables is a bit hard to follow, so let’s review.
θ tells us how ρ differs from ρc and varies from 0 to 1. α is a constant with
dimensions of length, and ξ tells us how r and α are related. Mashing this all
together, we get the famous Lane-Emden equation:

1

ξ2
d

dξ

�

ξ2
dθ

dξ

�

= −θn . (23)

The boundary equations on this say that θ = 1 at ξ = 0 (r = 0 and ρ = ρc) and
dθ/dξ = 0 at ξ = 0 (dρ/dr = 0 at r = 0). It can only be solved analytically for
n = 0,1, and 5.

Whew! We can integrate the Lane-Emden equation for a given n. These solu-
tions show that if n is large, the density peaks more strongly in the center.

We can use these relations to rewrite the mass of a polytropic star:

M =
∫ R

0
4πr2ρdr = 4πα3ρc

∫ ξ1

0
ξ2θndξ , (24)

3



Figure 1: Dependence of density on polytropic index, from Wikipedia

where ξ1 = R/α. Using the Lane-Emden equation, we can write

M = 4πα3ρc

∫ ξ1

0

d

dξ

�

ξ2
dθ

dξ

�

dξ = 4πα3ρcξ21

�

dθ

dξ

� �

�

�

�

ξ1

(25)

But that’s not all! Let’s make some more variables! As we did for θ, let’s define
how far the central density is from the average density. This parameter, Dn,
varies with n.

ρc = Dnρ̄ = Dn
M

4π/3R3
, (26)

and therefore

Dn = −
�

3

ξ1

�

dθ

dξ

� �

�

�

�

ξ1

�−1

(27)

We can then eliminate ρc and substitute α to get a relationship between mass
and radius that only depends on the constant Mn = −ξ2(dθ/dξ) and Rn = ξ1:

�

GM

Mn

�n−1 � R

Rn

�3−n

=
[(n + 1)K]

4πG
. (28)

Finally, we can get a relationship between the central pressure and our terms:

Pc =
(4πG)1/n

n + 1

�

GM

Mn

�(n−1)/n � R

Rn

�(3−n)/n

ρ(n+1)/n
c

(29)
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Figure 2: Values of the Lane-Emden variables, from your book.

and if we collect all coefficients that depend on n into yet another variable Bn,

Pc = (4π)1/3BnGM2/3ρ4/3
c

. (30)

OK, that’s quite enough! The amazing thing about these relations is that they
all depend on the polytropic index n. If we can determine that, we can solve
for relations of all the other stellar properties.

The Chandrasekhar Mass

One application of the polytropic models that we can assume best represents
reality is for degenerate stars. We said before that for these stars there is no
dependence of the pressure on the temperature, so our polytropic assumption
is valid.

If we take
�

GM

Mn

�n−1 � R

Rn

�3−n

=
[(n + 1)K]

4πG
, (31)

and n = 1.5 (γ = 5/3) for degenerate material, we find R ∝ M−1/3. The density
ρ ∝ MR−3 ∝ M2 . Therefore, for degenerate stars, as the mass goes up, the
radius goes down and the density goes up. In other words, higher mass white
dwarfs are smaller.

If the density is high enough, the electrons are relativistic, and n = 3 (γ =

4/3). This has a special form, since
�

R
Rn

�3−n
= 1 and therefore the mass is

independent of radius:

M = 4πM3

�

K

πG

�3/2

. (32)

Therefore, the only solution for M depends on the value of K. If we take K = K
′

2
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from before, we find

MCh =
M3
p
1.5

4π

 

hc

Gm4/3
H

!3/2

μ−2
e
= 5.83μ−2

e
M⊙ (33)

Reasonable values of μe range from μe = 2 (He, C, O) to μe = 2.15 (Fe), which
gives us 1.46 M⊙ to 1.26 M⊙. This is the maximum mass of a white dwarf (OK,
so rotation can alter things a little more...).

The Eddington Luminosity

I have stated a few times now, without evidence, that stars with masses
M ≳ 100 M⊙ will blow themselves apart. If we substitute in the expression for
radiation pressure, Prd = 1/3T4 , and then substitute hydrostatic equilibrium
into the temperature gradient equation, we find

dPrd

dP
=

κF

4πcGm
(34)

Since P = Pgs + Prd, dPrd < dP and

κF < 4πcGm, (35)

Near the center of the star, F(0) = 0 so F/m→ qc as m→ 0 where qc = q(m =
0). Therefore, radiative energy transfer can only accommodate:

qc <
4πcG

κ
. (36)

If we then substitute in for q,

L <
4πcGM

κ
(37)

and the so-called maximum luminosity before hydrostatic equilibrium is vio-
lated

LEdd =
4πcGM

κ
= 3.2 × 104

�

M

M⊙

�

�κes

κ

�

L⊙ (38)

When combined with the mass-luminosity relation, this gives an upper limit to
the mass of a main sequence star.
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