ASTR368 Midterm Review

Equations to memorize:

$$m_{\lambda} - M_{\lambda} = 5\log d - 5 + A_{\lambda} \tag{1}$$

$$P(z) = P_0 \exp(-z/H) \tag{2}$$

$$n(z) = n_0 \exp(-z/H) \tag{3}$$

$$\Omega(R) = \Theta(R)/R \tag{4}$$

$$v_r = (\Omega - \Omega_0) R_0 \sin \ell \tag{5}$$

$$a_c = v^2 / r \tag{6}$$

$$U = -\frac{3}{5} \frac{GM^2}{R} \tag{7}$$

(8)

A couple larger themes:

Relationship between orbital parameters and mass/mass distribution Relationships between integrated properties of galaxies and their stellar populations

Topics:

\mathbf{ISM}

Dust: extinction effects, emission properties Gas: components, emission Properties of the gas determined from emission lines HII regions

Milky Way

Components Scale height, and scale height values for various components Metallicity Galactic rotation, including LSR, Peculiar velocity, and Oort constants

Galaxies

Types and properties of each type Schechter luminosity function Light distributions Tully Fisher Faber-Jackson Spiral structures Lin-Shu density wave theory

Galactic Evolution

Dynamical friction Bottom-up vs top-down formation

AGN Unified model of AGN