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1 Approximation and Estimation

In your analysis toolkit, one of the most important things you must have is an ability to
perform approximation. The basic idea is using existing knowledge to make educated
guesses about the approximate values of parameters, and simple arithmetic to arrive at
an estimated answer. While it may seem simple-minded, it takes remarkable amounts of
practice to do well, and chances are you are presently quite bad at it.

These techniques will allow you to understand the relative importance of different fac-
tors influencing your data, whether you got anywhere near the result you should have
expected (i.e. answering the simple question did I do something wrong in my analysis?), and
many other useful applications. Often, approximation to an order of magnitude is enough
to further a fast-paced brainstorming discussion or allow you to make a decision. To give
you an idea of the relevance: order-of-magnitude calculations are, apparently, used to
screen interviewees at companies like Google because almost all careers involving anal-
ysis require this type of thinking. Entire courses have been designed on the premises
summarized here. In this Chapter, we will touch on order of magnitude (OOM) basics
during lecture, and future classes will be organized so that you can acquire further prac-
tice.

These notes give a general background for understanding the conceptual thinking behind
order of magnitude estimation. We also will review a common approximation technique:
Taylor expansion.

1.1 When to use approximation

When it’s a good idea:

• You want a quick estimate for the sake of a discussion.

• You want to make a conservative estimate.

• You don’t really have solid measurements.

• You have calculated a precise result but want a “sanity check” of your answer.

When it’s a bad idea:

• You need to quote a formal error.

• The decision to be made is very sensitive to the numerical result.

• You’re comparing two things that are close in value (around .100× one another).
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Credit: xkcd

1.2 How to think

Let’s start with an example

Physicist Enrico Fermi was famous for coming up with relatively accurate estimates for
complex questions based on little to no knowledge of relevance to the question. Here is
a popular example from his repertoire. Before you look at the answer, consider how you
would come up with a solution (And perhaps attempt one! How close do you get?):

Question:

How many piano tuners are there in Chicago?

Annotated Answer:

My intuition tells me that in a biggish city like Chicago, there should be something on the
order of maybe tens to a few hundred, maybe up to a thousand, piano tuners in business
in Chicago; however my intuition only gives me an estimation of the number within
about 3 orders of magnitude (10-1000), and I’d like to see if it’s anywhere near right.

I need to consider what the answer might rely on. I think: The more households, the more
pianos; and from a general knowledge and partially a guess, I think a piano needs to get
tuned maybe every few years. So let’s start there and try to make an equation.

Number of tuners = number of pianos in Chicago× tunings per year per piano (1)

Will this give us the answer we want? Let’s try dimensional analysis on it:

[Tuners] = [Pianos] [Tunings]
[year][Pianos] =

[Tunings]
[year] (2)

Dimensional analysis tells me this equation isn’t quite right (number of tuners should not
have units of tunings per year). So, let’s modify the equation to get it in the right units.
Because I want this number to come out in units of “Tuners,” the above dimensional
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analysis shows me that I should probably divide my equation by the number of tunings
that can happen per tuner each year:

Number of tuners = number of pianos in Chicago× tunings per year per piano
tunings per year per tuner (3)

Which gives:

[Tuners] = [Pianos] [Tunings]
[year][Pianos]

/
[Tunings]

[year][Tuners] = [Tuners] (4)

So now I have a nice equation, which has a few easier questions: 1) How many pianos
are there in Chicago?; 2) How often are pianos tuned?; and 3) How many pianos does the aver-
age tuner tune each week? Let’s answer these questions in turn using order of magnitude
estimation.

1) How many pianos are in Chicago?
This sub-question breaks down into further numbers that we have to estimate: for in-
stance, the number of households in Chicago with a piano. The question doesn’t specify
“greater Chicago” or “Chicago city limits”, but as far as cities go I’ve seen quotes on the
order of “the population of New York City is around 20 million people.” I know Chicago’s
a much smaller city, so I’ll say that it’s probably on the order of around 2-5 million people.

The average dwelling houses between 1 and 5 people, so let’s say there are on average 3
people per household in Chicago. To get the number of households in Chicago I can then
say ∼3 million people/(∼3 per house)' 1 million households.

How many of those households have pianos? I’m not really sure about this number, but
it seems like it should be much less than “all houses” and more than “1 in 100 houses.”
At the same time, 1 in 10 seems a bit high (of around 50 of my friends, I know maybe 2
with pianos). I’ll pick 1 in 20, so around 5% of households might have a piano.

So I get number of pianos = 106 households ×0.05 =∼ 5× 104 pianos in Chicago. Seems
maybe like a big number, but I think my estimates were reasonable.

2) How often are pianos tuned?
Another number I’m not sure about, however to get something in the right range I’ll take
a guess. It seems like pianos would be tuned more than once every 10 years (otherwise a
piano tuning might be a big deal, and when people have mentioned their piano getting
tuned it hasn’t seemed such). I’m guessing it’s not more than once per year. Some number
between 1 and 5 sounds reasonable, therefore, so I’ll choose 1 per year to low-ball my
answer. If it seems like this number was pulled roughly out of thin air, it was: but as you
see I have a number that’s probably correct within about 1 order of magnitude.

3) How many pianos can a tuner tune per week?
I know one (retired) piano tuner, who I’ve never seen tune anything but a guitar, so that
doesn’t really help me. However I’ll consider that the tuners are in business as a full-time
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job, and so they’ll need to fill 30–40 hours per week with tunings. I think a tuning takes
about 2-4 hours including travel time (remember it’s Chicago: lots of big-city traffic), so
they can probably get up to done 2 in a day. So, perhaps they can tune around 10 pianos
per week, or around 500 per year.

Let’s put this all together now and return to our Equation 3.

Number of tuners = 5× 104 × 1 /(5× 102) ' 100 piano tuners.

The internet tells me that the number of piano tuners in Chicago is actually around 290,
so my estimate is not wildly off the mark, and is in the right order of magnitude! I can
also see that if I had made slightly different decisions in the specific numbers in answer-
ing questions (1–3) above, I would still have come up with numbers in the ballpark of
“300ish”.

This is the essence of order-of-magnitude estimation.

Techniques of estimation

Note that while this example does not come from physics, it nicely demonstrates the
basics of order-of-magnitude techniques when approaching what seems to be a complex
question.1 The basic idea was to divide the problem into simplified sub-domains, make
educated assumptions for each, identify and ignore things that don’t matter, and arrive
at an answer. We will try this procedure a few times in class. Meanwhile here are a few
tools of the trade (consider how each of these were used in the above example):

• Define the question: In real life, questions may not always be clear or precise in their
wording. It might be up to you to decide exactly what question you are answering.
Try starting such problems by rewriting a more precise question, and answering
that.

• Divide and conquer: Split a complicated problem into manageable chunks, especially
when you must deal with tiny or huge numbers, or when a formula naturally factors
into parts (such as V ∼ l×w× h). Ask yourself: what main factors will the answer
rely on?

• Guess: Make a guess at the answer before solving a problem. The guess may suggest
a method of attack. Guessing—and checking and modifying your guess—improves
your intuition and guesses for future problems. Talk to your gut: When you make
a guess, ask your gut how it feels. Is it too high? Too low? If the guess is both, then
it’s probably reliable.

1The below list is adapted from Goldreich, Mahajan, & Phinney’s online textbook, “Order-of-Magnitude Physics:
Understanding the World with Dimensional Analysis, Educated Guesswork, and White Lies”
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• Lie skillfully: Simplify a complicated situation by assuming what you need to know
to solve it. For example, when you do not know what shape an object has, assume
that it is a sphere or a cube.

• Cross-check: Solve a problem in more than one way, to check whether your answers
correspond.

• Simplify: If you’re worried about whether some physical effect will matter, do not
worry about it in your first attempt at a solution. The productive strategy is to start
estimating, to explore the problem, and then to handle the exceptions once you un-
derstand the domain. The most common astronomy example: whether magnetic
fields will influence a result. They often get ignored in the first pass of understand-
ing a system, only to be returned to later once the basic system dynamics are under-
stood.

• Make assumptions: You should always be aware of your assumptions and how (at
least vaguely) they might affect your solution. However, as long as you remain
aware of those assumptions, and the assumption allows a solution, make it, and
return to worry about the damage afterward.

• Lower your standards: If you cannot solve the entire problem as asked, solve those
parts of it that you can, because the sub-problem might still be interesting. Solving
the subproblem also clarifies what you need to know to solve the original problem.

• Use symbols: Even if you do not know a certain value, define a symbol for it. It may
cancel. If it doesn’t, and the problem is still too complex, then lower your standards.

With a little knowledge and a repertoire of techniques, you can estimate just about any
quantity and perform fairly advanced theoretical physics.

Rounding

One of the things that can at first be hard to get comfortable with in OOM estimation
is to round off numbers, including constants, to the nearest order of magnitude while
calculating. As an example, try out these numbers:

(becomes)
0.08 → 0.1
π → 3 or 1

1234 → 103

seconds per year (31557600 s/yr) → π× 107 ∼ 107 seconds/year
L� = 3.828× 1026 W → 1026 W

To gain a bit of precision in the result, you can use less crude approximation (keeping
only one significant digit): for instance, π = 3, or perhaps M� = 2× 1030 kg. Whether you
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round a number upwards or downwards to the nearest OOM really depends on whether
you’d like to low-ball or high-ball your answer.

1.3 A few examples

Try a few of these to practice your techniques. Some rely on just a bit of basic physics. I
challenge you to come up with your own questions relevant to your life or field of study:
how might you estimate them?

• How much does street lighting cost in the city of Morgantown?

• How old are the dark parts of the Earth-facing lunar surface (hint: consider that
they are relatively craterless)?

• According to some recent highly accurate measurements made from satellites, the
continent of North America is drifting at a rate of about 1 cm per year. Assuming a
continent is about 50 km thick, estimate the kinetic energy the continental US has a
a result of this motion.

• How much does it cost to get 1 kg of material out of Earth’s orbit?

1.4 Taylor series: a review

Taylor series are important because they allow us to compute functions that perhaps can-
not be computed directly, and they allow us to do so to arbitrary precision (for the case
of estimation, they can simplify an expression immensely if you can tolerate a certain
amount of imprecision). This is effective because when you form a Taylor polynomial
expansion you can truncate it to your desired precision.

For a very practical example: Taylor series can be used to compute sin(x) without a calcu-
lator. The basic idea is say you have a function f(x) = sin(x), and you want to estimate f
close to some arbitrary number, lets say at x = a. To do this, we can use a Taylor expansion
to estimate values close to a. The Taylor expansion can be written as an approximation
around that value a by expanding the function f(x) as:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n (5)

where f (n)(a) refers to the nth derivative of f(x) evaluated at your reference number a.
Note that when you evaluate the zeroth order (n = 0), the function f (0)(a) is simply f(a),
and 0! and (x− a)0 are both 1.

Expanded out, you can write the above function as:
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f(x) ' f(a)
0! [n = 0; zeroth order approximation]

f(x) ' f(a)
0! + f ′(a)

1! (x− a) [n = 1; first order approximation]

f(x) ' f(a)
0! + f ′(a)

1! (x− a) + f ′′(a)
2! (x− a)2 [n = 2; second order approximation]

(...)

Here is a visual example to help you wrap your head around this. Let’s say we want to
understand how to evaluate f(x) = ex, a very popular function in physics. I know that
e0 = 1, so let’s try using a = 0 (note: as you will see, this is a common thing to do,
although a does not always have to be zero to use this series).

To get organized I can write out:

Order Derivative Derivative at a Factorial
n = 0 f(x) = ex f(0) = 1 0! = 1
n = 1 f ′(x) = ex f ′(0) = 1 1! = 1
n = 2 f ′′(x) = ex f ′′(0) = 1 2! = 2
n = 3 f ′′′(x) = ex f ′′′(0) = 1 3! = 6

Obviously this function is a nice one in terms of book keeping because its derivatives are
all the same (other functions will not be so kind).

Now let’s try the expansion. My zeroth-order approximation tells me that

f(x) ' f(a)

0!
= 1 (6)

Here is how that expression approximates the function ex in the range (-1, 1):

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5  0  0.5  1

f(
x)

x

0th order approximation

Is that a good approximation to ex? A world of NO, unless you’re exactly at x = 0.
Let’s try adding in higher-order terms to first approximate this function as a line, then a
quadratic, etc.
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Order f(x) ' What it looks like

n = 0 1

 0

 0.5
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0th order approximation

n = 1 1 + x
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1st order approximation

n = 2 1 + x+ (1/2)x2
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 1.5

 2

 2.5

 3

-1 -0.5  0  0.5  1
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x)
x

2nd order approximation

n = 3 1 + x+ (1/2)x2 + (1/6)x3

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5  0  0.5  1

f(
x)

x

3rd order approximation

For values of x very close to zero, the simple expression 1+ xwill suffice as a replacement
for ex in an equation. If you need more precision or need to maintain precision further
away from your reference value, you can add in the higher-order terms.

I hope you’ve noticed that what a Taylor Series amounts to is adding a bunch of poly-
nomial expressions with various coefficients in front of them, to approximate a function.
You may on occasion hear the term “polynomial coefficients”; in this context, this refers
to the numerical coefficient in front of the polynomial for each order (for this example:
1, 1, 1/2, 1/6).

Practical Application 1: Simplifying an Equation or Obtaining a Limit

Obtaining a limit:

8



Let’s say I have a function

y(x) =
cos(x)
2− x2 (7)

And I want to determine the limit as x→ 0. Let’s go straight to Mathematica, right? Think
again. Let’s do it analytically (as you would do for, say, a derivation in a publication), and
try a Taylor series. We want the limit close to zero, so will set a = 0. I’ll try to expand the
most annoying part of this expression, defining f(x) = cos(x) and noting that:

Order Derivative Derivative at a Factorial
n = 0 f(x) = cos(x) f(0) = 1 0! = 1
n = 1 f ′(x) = −sin(x) f ′(0) = 0 1! = 1
n = 2 f ′′(x) = −cos(x) f ′′(0) = −1 2! = 2
n = 3 f ′′′(x) = sin(x) f ′′′(0) = 0 3! = 6

So I can write:
f(x) = cos(x) ' 1 + 0− 1

2x
2 + 0(...) ' 1− 1

2x
2 (8)

...so long as the value of x is close to zero. Since we want lim x → 0 this applies nicely
and I can substitute in my Taylor series and find, simply, that:

lim
x→0

1− 1
2x

2

2− x2 =
1
2 (9)

Simplifying an equation:
The previous derivation works the same way if we had simply wanted to assume that x
is always going to be a value close to zero, or to whatever value we want a to be (as in the
example for ex above). Let’s say the expression in Eq. 7 is some function of wavelength λ
and distance r where:

y =
cos(λ/r)

2− (λ/r)2 . (10)

If this were the case, we could rightfully argue that in the case that λ� r, then we know
that the signal will always have a value of y ' 1/2, which is much preferable to have
in a derivation than the form of y in Eq. 10. Often in astronomy we will have situations
where you know that λ � r (or some equivalent) is a physically reasonable assumption.
If you’re using y as part of other expressions, replacing it with 1/2 in your derivation will
provide much simpler, and sufficiently accurate, results.

Practical Application 2: Small-Angle Approximations

A very useful and common example of Taylor series is “small-angle approximation”. In
class we will try writing out the Taylor series for sin(θ). If you did this for the basic trig
functions you will find that:

sinθ ' θ; tanθ ' θ; cosθ ' 1− θ2

2 (as derived above) (11)
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For reference, for sinθ here is how the approximated expression compares with the actual
one, between (−π/2,π/2):

θ

And here is the fractional error as your θ value deviates from zero (shown for values in
radians between 0 and π/2):

So you can see that using the small angle approximation is appropriate for values close to
zero. Within θ of about 0.2 radians (∼11 degrees), your error in assuming sin(θ) = θ will
be about 1% deviant.

1.5 Problems

Create and work through an OOM question of your own design, on any topic that inter-
ests you (physics/astronomy topics are warmly welcomed but not required; make sure
you come up with a question on your own, rather than using one you find on the web).
Please arrive at the next class prepared to come up to the board and lead a discussion on
your problem. Remember, the idea of these questions is not to arrive at the answer, but
to understand the procedure through which to get a roughly correct “first-order” answer.
There might be prizes for the most thought-provoking questions (and answers)!
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2 Coordinate systems

These notes contain the essential information you’ll need to understand where astronom-
ical sources are in the sky. Further details can be found in Textbook on Spherical Astronomy
(Smart 1977). Astronomers use many different coordinate systems, depending on what
is most convenient, but all of these systems use spherical coordinates. It is important to
understand these systems, why they exist, and how we can convert between them.

For spherical coordinates:

x = r sin θ cosφ (12)
y = r sin θ sinφ (13)

z = r cos θ (14)

Figure 1: Spherical coordinates.

It would be much easier to deal with Cartesian coordinates, but everything is projected
onto what we call the “celestial sphere.” The celestial sphere is just the imaginary surface
on which we observe celestial objects. It is helpful to think of this being a real physi-
cal sphere that rotates once per day. Due to this apparent projection, we don’t usually
know/care about coordinate r. We can therefore set r = 1 and express directions only
using the two angles. This makes life considerably easier! One important consequence of
this is that measurements on the sky are in angles, rather than physical distances.

To define a coordinate system, we therefore need just five things:
1) A longitude coordinate
2) A latitude coordinate
3) A starting point for longitude
4) A starting point for latitude (called the fundamental plane)
5) The origin
(The poles are necessarily defined by the above choices.)

We’ll go through these five characteristics of each coordinate system.
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2.1 Coordinate Systems

On the Earth

On the Earth we use:
1) Longitude to specify the E-W direction. Ranges from 180 ◦ East to 180 ◦ West, uses λ.
2) Latitude to specify the N-S direction, φ. Ranges from 90 ◦ north (+90 ◦) to 90 ◦ south
(−90 ◦).
3) The longitude of Greenwich, England is at zero degrees longitude.
4) The equator is at zero degrees latitude.
5) The center of the Earth as the origin.

While you all probably know all this, we will soon see that all coordinate systems are
similar to the Earth-based system that you are familiar with. There is, however, one sig-
nificant difference between the Earth-based system and those used for astronomy: instead
of considering coordinates as they appear looking down on the Earth, we imagine we are
inside the sphere of the sky (the “celestial sphere”) looking out. The effect of this change
in perspective is that the direction of increasing longitude is flipped.

Figure 2: Coordinates used to define a location on Earth.

Local (Horizon) Coordinates

Perhaps the easiest celestial system to visualize is is the Local Coordinate system. This
system is aligned with your local horizon, so it is tied to you the observer. It has:
1) Azimuth, Az, ranges from 0 ◦ to 360 ◦ and is measured from North toward East
2) Elevation or altitude measured from the horizon (0 ◦) to your zenith straight overhead
(+90 ◦). Although you can’t see it, at −90 ◦ is our nadir. Zenith angle, ZA = 90− El is an
alternative angle often used for telescopes that only observe close to the Zenith.
3) North is Az= 0 ◦.
4) Your horizon is at El = 0 ◦.
5) The origin is your location as observer.

12



Figure 3: Local coordinates. Note the horizon, zenith, and celestial meridian. The star shown
has an elevation measured from the horizon toward zenith, and a zenith angle measured from
the zenith down toward the horizon. Notice also that increasing longitude (azimuth) goes in the
opposite direction from that on earth.

While the horizon system is intuitive, because it is unique to each observer, it is not as
generally useful as one would hope. We therefore have numerous other systems that
are not tied to a specific observer. Horizon coordinates are useful when we are trying to
determine when an object will rise and set.

Galactic Coordinates

Observations of objects in the Milky Way often make use of Galactic coordinates. This
system is useful for specifying where objects are in relation to the rest of the Galaxy:
1) Galactic longitude, `. Ranges from 0 ◦ to 360 ◦.
2) Galactic latitude, b. Ranges from +90 ◦ at the Galactic north pole to−90 ◦ at the Galactic
south pole.
3) The Galactic center is at ` = 0 ◦.
4) The Galactic mid-plane is at b = 0 ◦.
5) The Sun is the origin.

Stars in our Galaxy are found in higher densities toward the mid-plane and toward the
Galactic center. Therefore, by knowing the Galactic coordinates of an object, we can possi-
bly infer something about its environment. The caveat here is that we often do not know
the distance to the object, which can make such inferences less accurate.

Equatorial system

Of all these systems, the Equatorial system is most often used because it corresponds
most closely with that needed to perform observations. This system is aligned with the
orientation of the Earth. As we will see later, this alignment causes one issue. The system
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Figure 4: Galactic coordinates. The top-left panel shows how the angles for ` and b are measured.
Note the direction of the north and south Galactic poles. The top right panel shows a face-on view
of what we think our Galaxy looks like, with longitude directions shown. Longitude increases
counter clockwise from the Galactic center. The bottom panel shows in infrared view of the Galaxy
from our perspective on Earth. The center of the figure is the Galactic center (`, b) = (0 ◦, 0 ◦).
The bright band in the middle is the mid-plane (b = 0 ◦). Galactic longitude increases from the
center toward the left hand side, with both the left and right edges at ` = 180 ◦. Galactic latitude
is b = +90 ◦ at the top and b = −90 ◦ at the bottom.

uses:
1) Right ascension, R.A., for longitude, which takes the symbol α. RA ranges from 0 to
360 ◦ and there are no negative values.
2) Declination, Dec., which takes the symbol δ, is used for latitude. Dec. ranges from
−90 ◦ to +90 ◦.
3) The origin of right ascension is the location of the Sun on the vernal equinox (March
21).
4) Zero degrees declination is the celestial equator, the projection of the Earth’s equator
onto the celestial sphere.
5) The center of the Earth is the origin.
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Other tidbits:
1) NCP and SCP stand for the north and south celestial poles, i.e. δ = +90 ◦ and δ = −90 ◦
2) The altitude of the NCP (or SCP) is your latitude on Earth
3) The Ecliptic is the Sun’s annual path across the celestial sphere. Since the apparent
Solar motion is caused by the Earth’s revolution around the Sun, and the Earths spin axis
is tilted by 23.5 ◦ to its orbital axis, the ecliptic is tilted by 23.5 ◦ with respect to the celestial
equator.
4) The Vernal equinox is where the Ecliptic crosses the celestial equator, so it’s not such a
crazy place to define α = 0 ◦.

Figure 5: Equatorial coordinates. Note the north and south celestial poles, the celestial equator,
and the ecliptic. The Vernal equinox is where the ecliptic and celestial equator intersect. This
system is the exact analog of what we use on the surface of the Earth, projected outward to the
celestial sphere.

Notation in the Equatorial System

R.A. can be expressed in degrees (or radians), but you’ll usually see it written in hours,
minutes and seconds of time, where 24hours = 360 ◦ or 1hour = 15 ◦. We will see why we
add this complication a bit later. So, for example, 20h34m45s = (20+ 34/60+ 45/3600)×
15 = 308.7 ◦. Similarly, declination can be expressed in degrees or radians, but you’ll
usually see it written in degrees, minutes and seconds. So for example 09 ◦45m34s =
9 + 45/60 + 34/3600 = 9.8 ◦.

Although the 24 hours is strange, it is of course common to use minutes and seconds to
distinguish fractions of an angle. In astronomy, we use “arcminutes” (symbol ′) and “arc-
seconds (symbol ′′) to illustrate that these are angles on a curved surface. One important
and strange caveat is that arcseconds of R.A. are not equal to arcseconds of Dec. (they
differ by the factor of 15 above)! If the unit “arcsecond” is used without a coordinate at-
tached, assume what is meant is that corresponding to the declination unit, i.e. 1/3600th
of a degree.
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The Sun in Equatorial Coordinates

Throughout its yearly motion across the sky, the path of the Sun (the ecliptic) of course
passes through a range of coordinates. It begins on March 21 at α = 0h, and then advances
approximately two hours per month over the next 12 months. Each week therefore adds
about 30m to the R.A. of the Sun.

In Declination, the Sun is at δ = 0 ◦ on March 21, then advances to δ = +23.5 ◦ on the
summer solstice (June 21), back to δ = 0 ◦ on the Fall equinox (September 21), and to
δ = −23.5 ◦ on the winter solstice (December 21). This gets us to a fundamental result:
in the Northern hemisphere, high declination sources closer to the NCP (i.e., the Sun in
summer) are up in the sky longer than low declination sources (i.e., the Sun in winter).
The same is true in the southern hemisphere for sources close to the SCP.

Figure 6: The motion of the Sun throughout the year (the ecliptic) in equatorial coordinates. On
this diagram, the Sun follows the green line, moving right to left throughout the year. Animated
version here: https://www.dropbox.com/s/6dx6z6z94unhmt9/solar year.gif

Epochs

The Equatorial system is really useful, but has one strange quirk. Because the Earth’s axis
is not stable but rather precesses and nutates, the locations of the NCP, SCP, and Vernal
Equinox shifts slightly. These changes are small, but important enough that we specify an
“epoch” by convention every 50 years. The most common epoch currently is the Julian
(J2000), and previously the Besselian (B1950) was used. As an example, a source with
J2000 coordinates R.A. = 09 h 45 m 30 s and Dec. = -15 deg 31 m 20 s has equivalent B1950
coordinates of R.A. = 09 h 43 m 06 s and Dec. = -15 deg 17 m 28 s. While you can specify
coordinates for observation in any epoch you like, it is very important to know which
system you are using! Failure to keep track of this has led to untold wasted telescope
hours :(.
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A Few More Words about Declination

The declination measures angular distance from the NCP or SCP. The motion of stars
across the sky is determined by your latitude on Earth, φ. For the northern hemisphere:
Sources with δ > 90 ◦ − φ are always visible. We call such stars “circumpolar”. These
same stars are never visible in south for same observing latitude.
Sources with δ < φ− 90 ◦ are never visible (circumpolar in the south for same latitude).
Low dec. sources do not rise far above the horizon.

For the southern hemisphere:
Sources with δ < φ− 90 ◦ are circumpolar.
Sources with δ > 90− φ are never visible.

In the northern hemisphere on Earth, all sources appear to circle around the NCP through-
out the day/night. In the southern hemisphere, the same is true for the SCP. The full
motion of every object takes 24 hours.

Figure 7: Left: A portion of the sky from a long-exposure photograph taken in the northern hemi-
sphere. Shown are star tracks near the circumpolar region. These stars have high Dec. values. The
NCP (δ = +90 ◦) is at the center of the nested arcs. Each star track is roughly 1/3 of a circle, indi-
cating that this exposure was roughly 8 hours long. Right: The celestial sphere showing the paths
the stars take during one 24 hour period for one particular latitude on Earth. Note the circumpolar
and “never rise” regions.

2.2 Time

Just as we need a coordinate system that is partially divorced from our observing location,
we also need a time system not entirely based on the rotation of the Earth.
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Hour Angle

Hour Angle (HA) is the angle between the celestial meridian (from the local coordinate
system) to the objects RA. This is a useful additional parameter when observing.

If an object is crossing the prime meridian, which we call “transiting,” the HA is zero.
Objects that are rising (before transit) have negative HA. Objects that are setting (after
transit) have positive HA. As time passes, the HA of an object increases.

For circumpolar sources, we say that it is in “upper culmination” when it crosses the
prime meridian closest to zenith. There is a corresponding lower culmination 12 hours
later when it crosses the prime meridian furthest from zenith.

Local Sidereal Time

As the Earth goes around the Sun, the Sun is of course found in different parts of the sky.
Ideally, we do not want to use the Sun as a reference point for when a day begins and
ends, but we would rather use something fixed to the locations of the stars. We therefore
distinguish between “sidereal time,” which is based on the apparent positions of the stars,
from Solar time, which is derived from the apparent position of the Sun.

One sidereal day is equivalent to the true rotation period of the Earth with respect to
background stars. As it revolves around the Sun in one year, the Earth completes one
extra rotation on its axis compared with the number of days in a year. Thus the sidereal
day is 365.25/366.25 = 99.727% as long as the Solar day, or 23h56m. Universal time (UT),
Greenwich mean time (GMT), Eastern daylight time (EDT) etc. are all based on Solar time.
When talking about the positions of celestial sources, however, we must use sidereal time
(ST).

Because it is tied to the local time in your time zone, ST is relative to the observer’s lon-
gitude. We need an absolute sidereal time that is defined at the Greenwich meridian as
Greenwich Sidereal Time (GST). The sidereal time we need for all calculations is the local
sidereal time (LST) defined as LST = GST – West longitude.

There are many ways to think of LST. Here are the three easiest in my opinion:

• LST is defined as the HA of the vernal equinox at your location. When the vernal
equinox crosses the local meridian, the LST is 0:00.

• The RA of any celestial body that is crossing the local meridian is the LST.

• So it follows that HA = LST - RA

This is where the idea of epochs comes into play. If the year is 2023 and we are using
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J2000 coordinates, the HA is not exactly equal to the LST−RA. This is only exactly true
at the current epoch, although we usually don’t care too much about this small change in
transit (and rise/set) time.

Julian Date

It is often convenient to have a running number for the day, so you may encounter a
“Julian date.” The Julian date begins with a value of “1” on January 1, 4713 BC at noon.
Hours, minutes, and seconds are given in decimals, and increase in the normal way from
that date and time.

2.3 Converting Between Coordinate Systems

With so many systems in use, it is essential to be able to convert between them. To do so
accurately, one should use spherical trigonometry.

Local and Equatorial

It is often important to convert between local and equatorial systems, to determine for
example when a source rises and sets. To do so, use:

sin Az = −sin HA cos δ
cos El (15)

sin El = sin δ sinφ+ cos δ cosφ cos HA , (16)

where φ is your latitude on Earth.

Galactic and Equatorial

The Galactic plane is tilted by about 60 ◦ from the CE and intersects the CE at ` ' 33 ◦.

To convert between Galactic and equatorial coordinates:

sin b = cos δ cos δg cos(α− αg) + sin δ sin δg (17)

tan(`− `g) =
tan δ cos δg − cos(α− αg) sin δg

sin(α− αg)
(18)

sin δ = cos b cos δg sin(`− `g) + sin b sin δg (19)

tan(α− αg) =
cos(`− `g)

tan b cos δg − sin δg sin(`− `g)
, (20)

19



where αg = 192.25 ◦, δg = 27.4 ◦, and `g = 33 ◦ define the conversion from B1950 equato-
rial coordinates to the Galactic frame, which was is defined at the B1950 epoch.

Figure 8: The conversion between equatorial and Galactic coordinates.

Honestly, it’s better to use an online converter:
https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/convcoord/convcoord.pl

2.4 Problems

The following problems are due next class. For these calculations, do not worry about the
epoch of right ascension. The idea of these exercises is to provide you with rough esti-
mates (accurate to a few minutes in time, and to about a degree or two in angle) necessary
for preparing observing proposals. Treat all R.A. and Dec. values as the current epoch.

1) What is the approximate LST at noon on today’s date?

2) If Altair (RA = 19h 50m, dec = +8deg 52m) is on your meridian, at a zenith angle of 15 ◦
(a) What is your latitude (remember: the altitude of the NCP is your latitude)?
(b) What is the HA of Deneb (RA = 20h40m)?

3) How long is a source with (α, δ) = (18h,−10 ◦) above the horizon from Morgantown?

4) The Five Hundred Meter Aperture Spherical Telescope (FAST) in China uses a similar
design to the now defunct Arecibo telescope to track sources as they move close to transit.
Find out the observatory coordinates and maximum zenith angle of FAST and use this
information to compute the LST ranges for each of the sources below:
(a) R.A. 20 h 34 m and Dec. +01 deg 45 m;
(b) R.A. 04 h 07 m and Dec. +16 deg 30 m.

5) Calculate the elevation at which the Galactic center transits as seen from:
(a) Green Bank;
(b) Parkes observatory (NSW, Australia).
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3 Units and fundamental quantities in astronomy

The following notes are based on material given in Loren Anderson’s Interstellar medium
course. Further discussion of some of the material here can be found in “Essential Radio
Astronomy” by Condon & Ransom which is freely available online and easy to find in a
Google search. You should also read Chapter 3 of Carroll and Ostlie.

3.1 Intensity

The specific intensity of radiation the most basic observable quantity. It is essentially the
surface brightness, and is appropriate for all resolved objects.

Brightness is independent of distance. Thus, the camera exposure time and aperture setting
for an exposure of the Sun would be the same, regardless of whether the photograph was
taken close to the Sun (from near Venus, for example) or far away from the Sun (from near
Mars, for example), so long as the Sun is resolved in the photograph. This seems terribly
wrong at first, but can easily be proven.

Brightness is the same at the source and at the detector. You can think of brightness in
terms of energy flowing out of the source or as energy flowing into the detector.

In radio astronomy, we use units for specific intensity of temperature in Kelvin. It is
related to the energy dE passing through an infinitesimally small area dA by:

dE = Iν dA cos θ dΩ dν dt. (21)

Here, “specific” refers to the fact that it is at a particular wavelength. We can of course
rewrite this as:

Iν =
dE

dA cos θdΩdνdt
. (22)

In this expression, θ is measured normal to the surface dA and dΩ is the solid angle. The
dimensions of Iν are then erg cm−2 Hz−1 s−1 sr−1.

Notice that we wrote the specific intensity in frequency units. Iν has a dependence on dν,
and dν 6= dλ. Instead,

dν = −(c/λ2)dλ. (23)

So combining with the above equations, we see that

νIν = λIλ. (24)

To get the intensity or integrated intensity we would of course integrate over frequency or
wavelength so that

I =
∫ ∞

0
Iνdν =

∫ ∞
0

Iλdλ. (25)
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3.2 Solid Angle

Specific intensity above included solid angles, which many students haven’t yet heard
of. A solid angle, measured in dimensionless steradians (sr), is simply a two-dimensional
angle. Think of it as a cone spreading out from the center of a sphere to its edge. A solid
angle is the area of a unit sphere such that there are 4π sr total on a sphere. The obvious
application is the sky. Objects that appear larger on the sky have a larger solid angle.

The mathematical definition is
dΩ = sin θdθdφ (26)

or
Ω =

∫
S

∫
sin θdθdφ , (27)

where θ and φ are angles in spherical coordinates and the integration is over surface S.

For a spherical solid angle, θ = φ and when θ is small

Ω ' πθ2 , (28)

with θ in radians of course. Notice that this is just the area of a circle of radius θ. The true
solid angle will be slightly smaller than this for a given value of θ, although this is almost
always appropriate for astronomical measurements. The true formula is

Ω = 2π(1− cos θ) (29)

3.3 Flux

While intensity is perfect for extended sources, we are frequently more interested in the
quantity of flux integrated over solid angle:

Fν =
∫
Iν cos θdΩ =

∫ 2π

0

∫ π

0
Iν cos θ sin θdθdφ . (30)

The units of flux are therefore erg cm−2 s−1 Hz−1. In radio astronomy we frequently use
the unit of Jansky (Jy), which is 10−23 erg cm−2 s−1 Hz−1. Similar to the intensity, we can
integrate over frequency or wavelength to get the flux or integrated flux.

In practice, when do we use spectral brightness and when do we use flux density to de-
scribe a source? If a source is unresolved, meaning that it is much smaller in angular
size than the point-source response of the eye or telescope observing it, its flux density
can be measured but its spectral brightness cannot. If a source is much larger than the
point-source response, its spectral brightness at any position on the source can be mea-
sured directly, but its flux density must be calculated by integrating the observed spectral
brightnesses over the source solid angle.

22



3.4 Luminosity

Intensity and flux are observable quantities, and not physical quantities. We are often
more interested in luminosity, which is intrinsic to the source. The observed luminosity

L = 4πd2F , (31)

where d is the distance to the source.

3.5 Distance

Distances to astronomical objects are fundamental. One such account can be found in
“Measuring the Universe” by Webb (Springer/Praxis). The fundamentals that we need to
know are that much of what we know about distances are based on the parallax technique
applied to the nearby stars. Review section 3.1 of C&O.

3.6 Magnitudes

Magnitudes are the units of brightness, typically used in the optical and near-infrared
regimes. They are always measured in a particular bandpass, for example the Johnson
V-band. This allows us to compute “colors” by looking at magnitude differences. Colors
are the crudest way of determining the shape of the spectral energy distribution.

Magnitudes are based on Hipparchus’s classification of stars in the northern sky. Hip-
parchus classified stars with values of magnitudes from 1 to 6, 1 magnitude being the
brightest. Because it was defined by eye, and the eye does not have a linear response,
a first magnitude star is not twice as bright as a second magnitude star. Instead, as-
tronomers later found that Hipparchus’ system is roughly logarithmic, and 6th magni-
tude stars are roughly 100 times fainter than 1st magnitude stars. The magnitude system
has two peculiarities: (1) it is defined backwards; (2) it is logarithmic.

Five equal steps in log-space (1st to 6th magnitude) result in factors of 2.512 in linear
space (100∆m/5 = 2.512∆m). Therefore, a 1st magnitude star is 2.512 times brighter than a
second magnitude star, and a 4th magnitude star is 2.5123 = 15.8 times fainter than a 1st
magnitude star. Another way of thinking about this is:

m1 −m0 = −2.5 log10(F1/F0) (32)

or
F1/F0 = 100.4(m0−m1) , (33)

where F1 and F0 are the fluxes and m0 and m1 are the magnitudes at wavelengths or
frequencies “0” or “1”. How can we actually use this system? We need a reference star of
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known flux and magnitude. Any star will do, but two commonly used ones are Vega and
the Sun. Instead of arbitrary wavelengths, we usually use photometric filters. The most
common filters used are the Johnson U,V,B,R,I, but there are now a large number of filters
available. Magnitudes found using these filters are often denoted with the filter names
themselves, e.g., B for mB .

Dust attenuates star light, and this attenuation is often measured in magnitudes. Each kpc
in the Galaxy produces about a magnitude of visual extinction. Star formation regions can
have visual extinctions of 100, so a star would have 2.512100 = 1040 times less light than
it would if extinction were not present. Extinction generally decreases with increasing
wavelength, so it is less in the infrared and essentially absent in the radio.

3.7 Hertsprung Russell (HR) diagram

This is one of the most important diagrams in all of astronomy and a favorite question for
examiners on student oral exams! If you don’t know much about the HR diagram, now
is the time to read about it. Look it up in C&O (Chapter 8), or find out about it online
or in any good introductory astronomy text book. In class, you need to be able to draw
it, describe it and connect it with some basic ideas about stars as black bodies. The next
chapter will be devoted to discussing blackbody radiation in more detail. For now, you
should be familiar with both the Stefan Boltzmann and Wien’s laws.

3.8 Problems

Work through the following before the next class. We’ll do them on the board in Russian
roulette style, so please be ready to defend any one of them.

1. Draw a diagram that describes the parallax technique, and use it to derive a relation-
ship between the distance to a star and its parallax in terms of the astronomical unit.

2. The parallax angle for Sirius is 0.379′′. Find the distance to Sirius in pc, light years,
astronomical units and meters. Determine the distance modulus for Sirius.

3. What is the solid angle of a single 6′′ square pixel?

4. At what distance from a 100-W light bulb is the flux equal to the solar irradiance?

5. A star has a B − V color of −1. Stars with B − V = 0 appear slightly blue. Does this
star look more or less blue? What does that imply about its temperature?

6. Draw an HR diagram and clearly label the various types of stars on it. How are the
parameters on the x and y axes measured in practice? Assuming that stars are perfect
black bodies, draw lines of constant stellar radius on the diagram.
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4 Interpreting Blackbody Emission

4.1 Blackbody Emission

The blackbody (Planck function) is:

Bν =
2hν3

c2
1

ehν/kT − 1
. (34)

or

Bλ =
2hc2
λ5

1
ehc/λkT − 1

, (35)

where the function is evaluated at frequency ν or wavelength λ, and the object is at tem-
perature T . These are shown in Figure 9.

Figure 9: Blackbody curves in linear (left) and log (right)-space. Wien’s Law can clearly be seen.

Students are often confused by the units: erg cm−2 s−1 Hz−1 sr−1 forBν or erg cm−2 s−1 cm−1 sr−1

for Bλ, where the additional “Hz” or “cm” term is the frequency or wavelength (often
given in Angstroms). This also means that it is a surface brightness. For resolved objects,
a surface brighness is most closely related to what your eyes see.

The fundamental observational quantity in astronomy is the specific intensity Iν . But
under what conditions is Iν = Bν? When the optical depth is high. Looking ahead a little
to radiative transfer,

Iν(τν) = Iν(0)e−τν +Bν(T )(1− e−τ ) , (36)

where Iν(0) is the background radiation and τν is the optical depth. So as τ → ∞,
Iν(τν) → 0 + Bν(T )(1− 0) = Bν(T ). To summarize, the Planck function has units of
specific intensity or surface brightness, and in the limit of high optical depth, Iν = Bν .

There are a two important points about blackbody radiation. First, we can use Wien’s
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Law to determine the peak wavelength (or frequency):

λmax =
0.2898
T (K)

cm , (37)

or
νmax = 5.879× 1010T (K) . (38)

We can derive these by setting the differential of Bλ or Bν equal to zero. This tells us
that hotter things peak at shorter wavelengths and higher frequencies. In the infrared, we
have some handy rules of thumb: a 30 K cloud peaks at 100µm, and a 100 K cloud will
peak at 30µm. Hot stars (30000 K) peak at 100 nm in the UV. The Sun (6000 K) peaks at
500 nm in the visible (green).

A second important point is that a hotter blackbody has a higher surface brightness in-
tensity at all frequencies. This can be seen in Figure 9.

It is important to remember that more intensity at all frequencies does not necessarily
mean more energy! Think about burners on a stove. A small hot burner will have very
intense radiation. A large cooler burner will have less intense radiation. But the larger
one may boil water faster because although its intensity (surface brightness) is lower, it
emits more total energy. What matters is the product of the surface brightness and the
emitting area.

Let’s quantify this. To find the intensity (not the specific intensity), we integrate over all
frequencies or wavelengths:

B(T ) =
∫ ∞

0
Bν(T )dν . (39)

After some math, this integral results in the expression

B(T ) =
σT 4

π
, (40)

where σ is of course the Stephan-Boltzmann constant. In the case of an isotropic radiation
field, which we can frequently assume, it can be shown that Fν = πBν , so therefore
F = σT 4. This is of course the Stephan-Boltzmann Law. We are often interested in the total
luminosity of an object (in erg s−1 or W):

L =
∫
S
FdA , (41)

the flux integrated over the emitting surface. For spherical objects, this leads to L =
4πr2σT 4, where r is the object’s radius. Thus, the total energy output is related to the
surface area and the temperature.

4.2 Applications in Radio Astronomy

If we are on the right-hand (long-wavelength) side of the peak, we can Taylor expand
the exponential: ehc/λkT − 1 ' 1 + hc/λkT − 1 = hc/λkT . In frequency units, we find
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ehν/kT − 1 ' 1 + hν/kT − 1 = hν/kT . We can therefore write

Bλ '
2ckT
λ4 (42)

or

Bν '
2ν2kT

c2
(43)

This is known as the Rayleigh-Jeans limit or Rayleigh-Jeans approximation. We almost always
assume this limit in radio astronomy. For example,

Sν =
∫
beam

IνdΩ , (44)

where Sν is the flux density [radio astronomy doesn’t use Fν for some reason], and the
integration is over the telescope beam (not necessarily over the entire source!). If we
approximate the spectral shape of the source as that of a blackbody, we can refer to the
temperature as the brightness temperature, TB , and then

Sν =
∫
beam

BνdΩ =
∫
beam

2ν2

c2
kTBdΩ . (45)

What is the brightness temperature? It is the value that is needed to give the measured
flux Sν . Wikipedia’s definition: “Brightness temperature is the temperature a black body
in thermal equilibrium with its surroundings would have to be to duplicate the observed
intensity of a grey body object at a frequency ν.” This is of course not necessarily the
kinetic temperature. If the source has a constant surface brightness over the telescope
beam,

Sν =
2ν2

c2
kTBΩ . (46)

4.3 Using Blackbodies

We can usually assume that stars emit similarly to blackbodies, in which case we know
their approximate spectral shape for a given temperature. Therefore, observations of stars
using astronomical filters can give you information about the temperatures of those stars.
Since the temperature and mass are related, we can get a proxy for mass.

The flux (or magnitude) that we measure depends on the filter used. In the optical we
may use the U, B, and V filters. We measure the convolution of the filter transmittance
and the source spectrum.

Imagine two filters placed on a blackbody curve. The flux ratio of these filters will give
you some information about how the spectrum is decreasing. For example, if the flux
ratio is large (the longer-wavelength filter is reading much less), the decrease is steep and
we must be on the long wavelength side of a high temperature peak. If the flux ratio is
small, we must be on the short wavelength side of a low temperature peak. From our
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discussion of magnitudes, we know that flux ratios are called colors. Colors therefore tell
you about the spectral shape, and the temperature of the object.

That colors are useful relies on the fact that stellar spectra are similar to that of blackbod-
ies. This is obvious from Figure 10 (Figure 3.11 in Carroll & Ostlie), where the U-V and
B-V colors of stars are compared to those of blackbodies.

Figure 10: B − V and U −B colors for star of various spectral types. If you haven’t encountered
spectral types before, B0 is the largest and M0 are the smallest mass stars in the diagram.

Astronomers use colors as a proxy for temperatures, for example on the color-magnitude
diagram, CMD. The CMD looks almost exactly like the H-R diagram because there is such
a clean mapping between colors and temperatures. Why use the CMD? The quantities
are entirely observable. In the H-R diagram, we often do not know the luminosity and
temperature, but we can easily measure magnitudes for a bunch of stars.
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Figure 11: A Color-Magnitude Diagram (CMD). Each dot corresponds to one star. Shown are the
main sequence (MS), location of white dwarfs (WD), the Horizontal Branch (HB), and the Giant
Branch (GB). With time, stars evolve off the main sequence, go up into the giant branch, back
down into the horizontal branch, and eventually become white dwarfs. The evolutionary tracks for
stars of various masses are also shown.
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4.4 Problems

1. Calculate the brightness of a blackbody radiator at a temperature of 600 K and a wave-
length of 0.5 microns.

2. Verify that the maximum brightness per unit frequency of a blackbody occurs at
59 GHz ×T (K).

3. Making the reasonable assumption that the Sun is a blackbody emitter, calculate the
number of photons with λ < 912Å emitted by the Sun each second.

4. Resistors are sometimes known as the “blackbody” of circuits in that they absorb any
electrical power that is applied to them and convert that power into heat. In an analagous
way to the generation of photons in a blackbody through the motions of charged parti-
cles in its walls, the motions of charged particles in a resistor generate electrical noise.
Nyquist’s formula gives the power per unit frequency interval

Pν =
hν

exp(hν/kT )− 1,

for a resistor of temperature T . Use this result to show that, in the Rayleigh-Jeans approx-
imation, Pν = kT . This is sometimes called the Nyquist approximation.

5. Use the Nyquist approximation to find a relationship between the flux density S mea-
sured by a radio telescope of collecting area A and its so-called “antenna temperature”,
T . Hint: you can do this by equating the power received by the telescope to that radiated
by an equivalent electrical circuit.

6. A single pulse of width 10 ms and flux density 1 Jy is detected from a pulsar located
at a distance of 5 kpc from the Earth in an observation carried out at 1.4 GHz. Calculate
the spectral brightness of the pulse and its corresponding brightness temperature. Hint:
use a light-travel-time argument to estimate the size of the emission region and, hence,
the solid angle subtended by this source in order to compute the spectral brightness.
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5 Radiative transfer

Radiative transfer is the change in intensity dIν as radiation propagates from a source
to the observer. Along the way, the emission will either be absorbed and scattered by
intervening material, or it will encounter an emitting region. Consider an observation of
a source shown schematically below (figure taken from ERA) where the specific intensity
is modified by absorption (attenuation) and/or emission from an intervening medium.

For attenuation, we can define a “linear absorption coefficient” κν with units of cm−1.
This is misleading since it contains contributions from both absorption and scattering! Note that
this is not opacity or mass absorption coefficient, although both share the same notation
and a similar definition! Sorry for the confusion. The amount of energy absorbed is
proportional to the light intensity:

dIν = −κνIνds, (47)

where ds is the path. Absorption removes photons from the path, thus the negative sign.
It is worth pointing out here that absorption excites atoms and molecules, and these atoms
and molecules then re-emit. It this emission was beamed along ds there would be no
change in intensity. Instead, the re-emitted light is more generally close to isotropic, so
the emission is reduced.

For emission, we can define the emission coefficient jν as:

dIν = jνds. (48)

Notice that there is no dependence on Iν , in contrast to absorption. The units of jν are
erg cm−1 sr−1 s−1.

The total change in intensity is therefore

dIν = jνds− κνIνds, (49)
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or
dIν
ds

= jν − κνIν . (50)

Equations 3 and 4 represent one form of the Equation of Radiative Transfer. This is one of
the fundamental equations in astrophysics. All it is saying, however, is that the change in
intensity along the path is just the emission (jν) minus the absorption (κνIν).

Let’s take the illustrative example of no emission. In this case

dIν
ds

= −κνIν , (51)

which has a solution
Iν(s) = Iν,0e

−κs, (52)

where Iν,0 is the unattenuated emission. The radiation intensity will decrease exponen-
tially.

We can also define the dimensionless quantity of optical depth τ from

dτν = −κν ds. (53)

or
τν = −

∫
κν ds, (54)

where the integration is carried out over the path length. In most cases, we need only
integrate over the source of interest. For example, if there is a gas cloud 20 kpc away that
is 1 kpc thick, we may be able to only integrate over the 1 kpc of the cloud if the rest of the
20 kpc can be assumed to have no impact. For completeness,

Iν(τν) = Iν,0e
−τν , (55)

The optical depth ranges from zero to infinity. Low values τν � 1 are called “optically
thin.” These are things you can see through at that particular frequency. A good example
is glass, which has a very low optical depth at optical frequencies, but actually has a high
optical depth in the ultra-violet. High values τν � 1 are called optically thick. A wall is
optically thick at optical frequencies. A wall is optically thin at X-ray frequencies. Near
τ ' 1 we have to be careful - this is marginally optically thick.

If we rewrite things in terms of the optical depth, using dτν
ds = κν ,

dIν
dτν

=
jν
κν
− Iν . (56)

We can further define the Source function Sν

Sν =
jν
κν

(57)
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Combining our expressions, we arrive a second form of the Equation of Radiative Transfer,
this time using the optical depth and source function so that

dIν
dτν

= Sν − Iν . (58)

We will use this one from now on, because optical depth is a much better and more mea-
surable parameter compared to actual linear depth.

In (full) thermodynamic equilibrium (TE) at temperature T , there is no change in intensity
along the path and dIν

dτ = 0. In this case, Iν = Sν = Bν(T ), our old friend the Planck
function. When is Iν = Bν(T )??? When dτ → ∞! Or in other words, when the optical
depth is high, the intensity is that of a blackbody at temperature T . In this case, nothing
else about the source matters, only its temperature.

This is a subtle, but extremely important point. For high optical depth sources, the only
emission you can get out is that of a blackbody. You cannot for example get line emission.
The source properties, aside from temperature, do not matter. The only thing you see is
the surface emission. In fact, you only see down on average to the depth where the optical
depth is unity. Think of a wall again, where you cannot determine how thick it is since
you only see the paint layer (ok, so a wall actually is not a perfect blackbody since paint
reflects light of different wavelengths....). Contrast this with glass. As glass get thicker,
and thicker, we will notice more of a green hue. By determining how green it is, we can
work out how thick it is. We will return to this point later.

5.1 Solutions to the Equation of Radiative Transfer

The deceptively simple equation of radiative transfer has had volumes written about its
solutions. We can integrate the transfer function by multiplying by eτν . If we define τν = 0
at Iν,0, we find

Iν(τν) = Iν,0(τν)e
−τν +

∫ τν

0
Sν(τ

′)e−(τν−τ
′
ν) dτ ′ (59)

The intensity Iν at optical depth τν is the initial (background) intensity Iν,0 attenuated by
a factor e−τν , plus the emission Sνdτ

′
integrated over the path, itself attenuated by the

factor eτν−τ
′
ν . This final exponent represents “self-absorption.” The material itself will

absorb its own radiation. “Self-absorption” refers to absorption by one species (HI, CO,
etc) by that species. If background radiation from e.g. HI is absorbed by optically thick
HI, this is called self-absorption. We will revisit this when we talk about HI and CO. This
is known as the “formal solution to the equation of radiative transfer.”

The difficulty in using Equation 59 is that in general we don’t know how S varies with
τ , because S depends on I , which is not known until S is known. It’s a circular problem,
which is why it is often solved computationally. It is worth examining this equation a bit
more in limiting cases that allow us to simplify the integral:
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τ = 0

If the optical depth is zero, we get Iν = Iν,0, simply the background intensity back. If
there is no optical depth, we get neither emission nor absorption (like a window!). This
illustrates how emission and absorption are intimately related.

S constant

We can sometimes make the assumption that Sν is a constant, so we can pull it out of the
integral:

Iν(τν) = Iν,0(τν)e
−τν + Sν

∫ τν

0
e(−τ−τ

′) dτ ′ = Iν,0(τν)e
−τν + Sν(1− e−τν ) (60)

The first term on the right hand side is attenuation along the line of sight. The second one
is emission along the line of sight.

S constant, LTE

In Local Thermodynamic Equilibrium, LTE, Sν = Bν(T ), so

Iν(τν) = Iν,0(τν)e
−τν +Bν(1− e−τν ). (61)

We will discuss LTE later, but essentially it means that for a small volume we can as-
sume a single temperature that is also reflected in the level populations of the atoms and
molecules.

S constant, LTE, Radio Regime

In the radio, we use the brightness temperature instead of the intensity. They are related
by Iν = 2ν2

c2 kTB . We can also use the Rayleigh-Jeans approximation Bν(T ) = 2ν2

c2 kT , with
T here the kinetic temperature. Since these relationships both have the same constants,
we can write

TB = TB,0e
−τν + T (1− e−τν ). (62)

Note that the use of the Rayleigh-Jeans approximation here does not imply that the ma-
terial is optically thick. It just implies that the emission is still modified by the optical
depth.
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S constant, LTE, Optically Thin

If τ � 1, we get emission from the background radiation, as well as from along the line
of sight. We can make the Taylor expansion substitution e−τν ' 1− τν , so

Iν(τν) = Iν,0(τν)(1− τν) +Bντν ' Iν,0(τν) +Bντν . (63)

The first term again is the background radiation attenuated by the ISM. The second term
is the Planck function modified by the optical depth of the ISM. Notice that we can still
have a blackbody-like spectrum even if it is optically thin, although it is modified by the
optical depth (which is less than 1). In the case that τν = 0, we of course only see the
background radiation. In the radio regime,

TB = TB,0(1− τν) + Tτν ' TB,0 + Tτν . (64)

S constant, LTE, Optically Thick

If τ � 1, e−τν → 0, so
Iν = Sν . (65)

If there is a blackbody in our line of sight, we don’t see any emission from behind it.
In radio astronomy, TB = T for optically thick emission, the kinetic temperature of the
material (if in LTE).

5.2 Problems

1. Complete the derivation to justify Equation 59.

2. A signal passes through two cables with the same optical depth. The two cables have
temperatures T1 and T2, where T1 > T2. Which cable should be connected first to obtain
the lowest output power?

3. Suppose a radio astromomer observes sources at 1.3 cm wavelength at elevations be-
tween 8 and 11 degrees. If the zenith optical depth is 0.1, what are the optical depths due
to the atmosphere at these elevations? The astronomer sees at most a 30% change in the
optical depth over this range. Is this reasonable? Justify your answer.

4. Suppose that the emission from the Earth’s atmosphere at 225 GHz is found to be
15 K at the zenith, 18 K at 60 degrees elevation, 30 K at 30 degrees elevation and 42 K at
20 degrees elevation. If the temperature of the atmosphere is 200 K, what is the zenith
optical depth?
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5. Show that the change in magnitude in some optical band caused by an optical depth
τ is −2.5 log10(e

−τ ). What optical depth would cause a magnitude change of one unit?
Look up what is meant by optical extinction and relate it to this expression, show that the
extinction is 1.086τ .

6. Consider observing an external galaxy which lies at some Galactic latitude b as seen
from the earth. Adopting a simple slab model of the interstellar medium for our Galaxy,
show that the optical depth cause by our Galaxy is proportional to cosec |b|. If τ = 1 for
an observation at the north Galactic pole. How much extinction would you expect for an
observation of a galaxy at b = 30◦.
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6 Stellar Structure and Evolution

Stars are objects that are bound by self-gravity and produce their own energy, typically
through nucleosynthesis but, at some stages in life, through gravitational contraction. In
this overview, we describe some very basic properties of stars and how they are observed
and/or measured. We will then work through some of the key ingredients for under-
standing stellar stability and energy generation, and the processes through which stellar
properties change as they age. Finally we will discuss stellar end-points.

6.1 Stellar Properties

The observables that allow us to model and understand stars include distance, fluxes,
luminosity, temperature, color, mass, and size. Some of these can be measured directly
and others much be inferred based on other quantities. For example, distances d are
derived directly from parallax measurements, fluxes F with optical observations, and
luminosities from fluxes and distances (L = F/4πd2).

Temperature (or color) is measured from observations of the spectrum of a star, under
the (very good!) assumption that it emits as a blackbody using Wien’s Law λmax =
3× 106nm/T (K) where λmax is the wavelength at which the blackbody spectrum peaks
and T (K) is the temperature of the surface of a star in Kelvin. Given that the Sun’s black-
body spectrum peaks at roughly 500 nm, we can derive a surface temperature of roughly
6000 K. If the blackbody spectrum peaks outside of the observed range, the temperature
can still constrained by taking the ratio of the flux at two different wavelengths.

Size is tricky to measure directly, aside from in special systems such as eclipsing binaries.
However, again assuming that stars are blackbodies we can use the Stephan-Boltzmann
Law, L ∝ R2T 4 to calculate stellar radii. This very basic equation lies at the core of the
HR Diagram, which classifies stars according to their luminosity and temperature (see
Fig. 12). Oftentimes spectral classes, with O the hottest, blue-est class and M the coolest,
red-est class, are used instead of temperatures. These spectral classifications are based off
of the strength of hydrogen absorption lines, with A-type stars having the brightest lines
and O-type stars the weakest. Fig. 13 summarizes the properties of different classes of
stars.

A final and important property of stars is their composition. We define compositions in
terms of the mass fractions of Hydrogen, Helium, and Metals, respectively, as X , Y , and
Z (yes, we term all atoms heavier than Helium as metals). We will generally assume solar
composition (roughly X = 0.7 , Y = 0.28 , Z = 0.02 for all calculations. This composition
will of course change throughout a star’s life but aside from small (+− 0.01) variations in
metallicity for older (Population II) vs younger (Population I) stars, stars of all masses
have comparable compositions.
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Figure 12: The HR Diagram, illustrating several different stellar populations.

There are many other stellar properties that one could discuss (e.g. shape, rotation, mag-
netic field, velocity, binarity). For the remainder of this writeup, however, we will assume
that stars are non-rotating, non-magnetic, isolated, perfect spheres.

6.2 Energy Generation

Stars generate energy through nuclear fusion, or the combination of smaller atoms into
larger atoms. This process releases energy for atomic numbers less than 56 because the
masses of the constituent atoms are smaller than those of the final product. A simple
calculation, given the masses of Hydrogen and Helium, shows that the conversion of
four Hydrogen atoms into a single Helium atom releases E = ∆mc2 = 4× 10−5 ergs.
Given the Sun’s luminosity of 4× 1033 ergs s−1 we see that nuclear fusion could power
the Sun for roughly 7× 1010 years, roughly seven times greater than its estimated lifetime.
Hence, nuclear fusion is an efficient and viable energy source.

However, the actual process of combining four Hydrogen atoms into a single Helium
atom is not a simple task! In order to conserve charge, protons much decay into neu-
trons, resulting in the emission of neutrinos to ensure lepton conservation. This weak
decay is the first, and slowest stage of the first Proton-Proton (PP) Chain, responsible
for the majority of energy generation in the Sun. The other two PP Chains dominate
in more massive (i.e. hotter) stars. Hydrogen is also converted to Helium through the
CNO cycle. The inputs (four Hydrogen atoms) and outputs (a Helium atom, two neutri-
nos, two positrons, and photons) are the same, but in the CNO cycle Carbon, Nitrogen,
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Figure 13: Properties of stars of different spectra classes.

and Oxygen act as catalysts for these reactions. The CNO cycle will dominate energy
generation for stars roughly twice the mass of the Sun and higher. In Fig. 14 we illus-
trate these various processes. Note that comparison of the thermal energies of particles
at the temperatures listed in Fig. 14 and the Coulomb barriers between the two positively
charged particles of interest shows that nuclear reactions should be impossible! Quantum
mechanical tunneling is necessary for any nuclear reactions to occur.

Stars spend nearly all of their lives on the ‘main sequence’, converting Hydrogen to He-
lium. Once they deplete the Hydrogen in their cores, their cores will contact and get
hotter until (if a star is massive enough), fusion of heavier elements will be possible. The
Sun will mostly likely end its life with a Carbon/Oxygen core, while the most massive
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Figure 14: Nuclear fusion processes and temperatures at which they dominate.

stars will convert all of the atoms in their cores to Iron.

Reaction rates for nuclear reactions can be calculated as rix = ninx〈σv〉 s−1cm−3, where
ni and nx are the number densities of the incident and target particles and 〈σv〉 (often re-
ferred to as the “Gamow factor”) is the average of the reaction cross-section and velocity.
We assume that the particles are in local thermodynamic equilibrium. This then allows
us to use the Maxwell-Boltzmann distribution for velocities. Calculating cross-sections is
more complicated, but there are several critical terms. These include a E−1 dependence
for the classical “size” of a particle (from the de Broglie wavelength), a “shape factor” (de-
noted by S) which accounts for “chemistry”, and the probability of quantum mechanical
tunneling. This probability goes like exp(−b/E1/2), where b is a constant that is larger
for higher masses and charges.

In the end, the Gamow factor 〈σv〉 will be an integral over all energies of the product
of the tunneling probability and exp(−E/kT ) from the Maxwell Boltzmann distribution
(the E−1 term from the classical “size” of the atom will cancel the E dependence of the
Maxwell Boltzmann integral). One of these exponentials (the tunneling probability) will
increase with energy, while the other (the Maxwell Boltzmann distribution) will decrease
with energy, leading to a roughly Gaussian shaped final product (see Fig. 15). Note that
reactions happen in the extreme tail of the Maxwell-Boltzmann distribution.

It is impossible to calculate this double-exponential integral for 〈σv〉 analytically, but one
can use a Gaussian approximation to derive an analytical solution. These reaction rates
rix are then typically converted into energy generation rates ε = rixQ/ρ, with units of
ergs g−1s−1, where Q is the amount of energy released per reaction. This is then ap-
proximated as a power-law, valid within a narrow temperature range, so that the final
expressions we rely on have the form ε ∝ ρλT ν . As the charges of the interacting atoms
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Figure 15: The Gamow factor for nuclear reactions.

increase, ν will also increase due to the higher Coulomb barrier, and consequent higher
particle energies required for tunneling.

6.3 The Four Equations of Stellar Structure

Stellar modeling requires four basic equations. The first – the mass equation – simply
describes Mr, the mass interior to a radius r, for a sphere with a particular density depen-
dence ρ(r).

Mr =
∫

4πr2ρ(r)dr (66)

The second equation of stellar structure – the equation of hydrostatic equilibrium – can be
derived by equating an inwardly directed gravitational force and an outwardly directed
force due to a source of internal pressure to dictate how pressure must vary with radius
in a star in equilibrium.

dP

dr
= −GMrρ(r)

r2 (67)

The third equation of stellar structure – the luminosity equation – dictates how luminosity
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produced from within a radius r varies with radius for an energy generation mechanism
with a particular ε (or a particular density and temperature dependence).

dLr
dr

= 4πr2ρ(r)εdr (68)

m

The fourth equation of stellar structure provides the relationship between luminosity and
the temperature gradient in a star as

Lr = −
4πr2c

3κρ
daT 4

dr
(69)

where κ is the opacity. Opacity is defined such that the final intensity of light If is related
to the initial intensity of light Ii through the relation, If = Iiexp(−κρs), where s is the
path length the light has traveled. From this expression, one can see that opacity has
units of cm2g−1, or effective area per unit mass.

6.4 Energy Transport

Energy is transported in stars in three main ways: radiation, convection, and conduction.
Because of its T 4 dependence, radiation will be important at high temperatures. As con-
duction is energy transport by particles, with energy proportional to ρT , it will be more
important at high densities and lower (relative) temperatures. Convection will be impor-
tant for energy transport whenever the temperature differential (dT/dr) is large, allowing
convective bubbles to stay hotter than their surroundings as they rise. Note that the to-
tal opacity κtot is the harmonic sum of the radiative and conductive opacities, such that
1/κtot = 1/κrad + 1/κcond. This means that even if the radiation opacity is very high, en-
ergy can still be transported through conduction if the conductive opacity is low (and vice
versa). However, different sources of radiative opacities add linearly. For instance, opaci-
ties due to free-free, bound-bound, bound-free, and Thompson scattering would add like
κrad = κff + κbf + κbb + κTS because if photons have been absorbed or scattered by one
of these processes, the opacities of the other processes are not relevant.

Radiation and convection are the dominant processes of energy transport for main se-
quence stars, while conduction becomes important for degenerate stars (i.e. white dwarfs
and neutron stars). In order to determine whether radiation or convection will dominate
energy transport, one must calculate dT/dr throughout the star. We find that dT/dr is
high in regions where Hydrogen and Helium are not fully ionized (or at temperatures
of less than ∼ 10, 000 K). It is also high in regions where the CNO cycle dominates en-
ergy generation, because of its steep temperature dependence. Therefore, radiation is the
dominant energy transport mechanism at the cores of low-mass stars while convection is
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dominant in the cores of high-mass (> 2 M�) stars. Convection is also important in the
outer “ionization zones” of both types of stars, with these zones extending deeper below
the stellar surface for lower mass stars (see Fig. 16).

Figure 16: Low-mass stars have inner radiation and outer convective zones, while high-mass stars have inner con-
vective and outer radiative zones.

6.5 The Virial Theorum and Equations of State

The virial theorum tells us that, for any system of particles under an external force in
equilibrium, 2K = −Ω, where K is the total kinetic energy and Ω is the total potential
energy. This theorum has many applications in stellar structure. For example, it can be
used to calculate the average temperature of a star or system or particles. One useful
expression of the virial theorum is

−Ω =
∫ 3P

ρ
dMr (70)

Given a simple equation of state that relates density and internal energy, P = (γ − 1)ρE,
where E has units of ergs g−1, we can then write the virial theorum as −Ω = 3(γ − 1)U
where U is the total internal energy (the energy per unit mass integrated over mass). For
an ideal gas, γ = 5/3 and therefore K = U . For gases dominated by radiation pressure,
γ = 4/3. As we will show in Sec. 6.8, for degenerate gases, γ = 5/3 in the non-relativistic
case and 4/3 in the relativistic case.

The virial theorum can be used to calculate criteria for stability for stars. Importantly, in
order for a star to be stable, the total energy W = U + Ω must be less than zero. One can
then show that
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W =
3γ − 4

3(γ − 1)Ω (71)

This implies that a star in hydrostatic equilibrium must have γ > 4/3.

6.6 Homology Relationships

“Homology” relationships involve using simple dimensional analysis to determine how
physical quantities in a system depend on each other. In our case, we aim to determine
how the properties of a star (such as density, temperature, luminosity, etc) depend on
stellar mass. One such relationship is ρ ∝ M/R3. Taking logarithm differentials of both
sides, we find the first input to our problem

dlnM = 3dlnR+ dlnρ (72)

The second input to our problem is the luminosity equation, which tells us that dLr/dMr =
ε, with ε ∝ ρλT ν . Taking logarithmic differentials of both sides, we can write this as

−dlnM = −dlnL+ λdlnρ+ νdlnT (73)

We assume that pressure depends on density and temperature like P ∝ ρχρTχT . Setting
this equal to P ∝ M2/R4 from hydrostatic equilibrium, and taking logarithmic differen-
tials, we find

2dlnM = 4dlnR+ χρdlnρ+ χTdlnT (74)

Finally, our fourth equation of stellar structure and an opacity that is expressed as κ ∝
ρnT−s provide our last equation

dlnM = 4dlnR = ndlnρ− dlnL+ (4 + s)dlnT (75)

With four equations and four unknowns, we can solve this system of equations in order to
calculate αR, αT , αL, and αρ, where R ∝MαR , etc. In order to determine these quantities,
we must make some assumptions. First, we assume that pressure is dominated by ideal
gas pressure such that χρ = χT = 1. Second, we assume that opacity is dominated
by Thompson scattering of photons off of electrons such that n = s = 0. Third, we
assume CNO cycle energy generation such that λ = 1 and ν = 15. We can then calculate
αR = 0.78, αT = 0.22, αL = 3, and αρ = −1.33. These expressions are roughly correct for
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the high mass > 2 M� population. For lower mass stars, convection is more important
for energy transport in the outer layers, and this treatment is not sufficient.

6.7 Distribution Functions, Energy Levels, and Ionization

The relation between the number density of some species in coordinate-momentum space
can be expressed as

n(p) =
1
h3
∑
j

gj
exp([−µ+Ej +E(p)]/kT ) +− 1. (76)

summed over j states and with “+” in the denominator for Fermions and “-” in the de-
nominator for Bosons. Other terms in this equation are the chemical potential µ, the
energy of the state Ej , kinetic energy E(p), and degeneracy gj .

For photons, gj = 2, µ and Ej are zero, and E(p) = pc. Integrating over momentum space
gives us the number density

n =
8π
h3

∫ ∞
0

p2dp

exp(pc/kT )− 1cm−3. (77)

From this one can calculate the radiation pressure Prad = aT 4/3 and radiation energy
density Erad = aT 4, where a = 8π5k4/15c3h3. Is is also possible to recover Wien’s Law
and the Stephan-Boltzmann law through calculation of the energy density per unit wave-
length.

This distribution function is more complicated for Fermions, depending specifically on
the species. One critical expression derived from the distribution function, however, re-
lates the number densities of particles in two different energy states to the temperature

n1
n2

=
g1
g2
e−(E1−E2)/kT . (78)

The expression shows that levels become more sparsely populated as energy increases,
but that higher energy states are more likely at higher temperatures.

One can also use this distribution function to derive the Saha equation for the ionization
fraction y dependence on density and temperature

y2

1− y =
4.01× 10−9

ρ
T 3/2e−1.578×105/T . (79)
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This shows that material becomes more ionized at higher temperatures and lower densi-
ties.

6.8 Degeneracy and Compact Objects

Degeneracy is a natual outcome of the Pauli exclusion principle: as a material becomes
denser, and the spacing between particles decreases, they are forced into higher and
higher energy states. When all of the energy states up until the Fermi energy EF are
full, we say a gas is completely degenerate. This will never happen in principle, as it
requires a temperature of zero. However, when EF > kT , material will behave like a de-
generate gas. As the exponential term in the distribution function is a step function (with
all energy states up to a certain level occupied and none beyond), the number density in
a degenerate gas is easy to derive as

n =
8π
h3

∫ pF

0
p2dp (80)

where pF is the Fermi momentum. Defining xF = pF/mc, one can write the equation of
state for a degenerate electron gas as

ρ

µe
= Bx3 (81)

where B = (8π/3NA)(h/mec)−3 = 9.7× 105 g cm−3, NA is Avogadro’s number, and µe is
the ratio of the number of nucleons to electrons in the species. The transition from non-
relativistic to relativistic mechanics will take place when x ' 1 or at densities of roughly
106 g cm−3. This is the typical density of a white dwarf, and also close to the core density
at which the “Helium flash” takes place in post-main sequence evolution. White dwarfs
must therefore be treated relativistically.

For neutron star matter, with me replaced by mn, B = 6× 1015 g cm−3, well above typical
neutron star densities of 2× 1014 g cm−3, indicating that neutron stars can be treated non-
relativistically. As with photons and atoms, one can calculate the pressure and energy of
a degenerate gas. One finds that for non-relativistic neutrons or electrons, Pe ∝ Ee ∝ ρ5/3

and for relativistic electrons, Pe ∝ Ee ∝ ρ4/3. Hence, degenerate gases act like ideal gases
in the non-relativistic limit and like photon gases in the relativistic limit.

From the virial theorum in the form 3(γ− 1)U = −Ω, assuming a uniform density sphere
and U = V Ee, where V is the volume, one can derive a mass-radius relation of M ∝ R−3

for the non-relativistic regime. In the completely relativistic regime, the radial depen-
dence will drop out of the expression, leading to a maximum mass limit. For white
dwarfs, this limit is 1.456(2/µe)2 M�, otherwise known as the Chandrasekhar mass. For
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neutron stars, this simple treatment is not sufficient to arrive at a maximum mass estimate
due to the unknown equation of state and the influence of the strong force.

6.9 Post Main Sequence Evolution

The lifetime of a star on the main sequence is a strong function of its mass, varying
roughly as the third to fourth power of the mass (while more massive stars have larger
supplies of Hydrogen, their luminosities are much higher than lower mass stars). Once
a star exhausts the hydrogen in its core, the core will contract, heating up, and the outer
layers will expand, cooling down. Eventually the core will become hot enough for fusion
processes at higher atomic numbers. The triple-α process will convert Helium to Carbon
and, if the core gets hot enough, heavier and heavier elements will be created. Stars follow
complicated tracks on the HR diagram during this evolution, as shown in Fig. 17. More
massive stars will complete this entire process faster and will not experience a Helium
flash (as their cores are not degenerate).

Figure 17: The path followed by a solar-mass star on the HR diagram.

The end-point of a star will be determined by its initial mass, with stars of< 8M� becom-
ing white dwarfs, starts with masses between 8 and 20 M� becoming neutron stars, and
more massive stars becoming black holes. Assuming any reasonable initial mass function,
the vast majority of stars will end their lives as white dwarfs.

6.10 Nuclear Fusion questions

1. List all of the reactions in the PP I reaction chain. How much energy is released from
each step? The masses of H, 2

1H, and 3
2He are 1.0074 amu, 2.0141 amu and 3.0160 amu,
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respectively.

2. What fraction of the Sun’s energy is produced from the PP I, PP II, and PP III reaction
chains, respectively?

3. How does the PP chain energy generation rate depend (approximately) on density and
temperature? If the Sun’s density were increased by a factor of two, by how much would
the PP reaction rate increase? If the Sun’s temperature were increased by a factor of two,
by how much would the PP reaction rate increase?

4. Assuming that the luminosity of the Sun is constant, calculate an upper limit (assuming
all of the hydrogen in the Sun can be converted to helium) to the length of time that the
Sun could power itself through fusion of hydrogen? Assume a hydrogen mass fraction
X = 0.73.

5. List the two reactions of the triple-α process that will power the Sun once the hydrogen
in the core is exhausted. How much energy is released from each step?

6. How does the triple-α reaction energy generation rate depend (approximately) on
density and temperature? Explain and constrast to the dependence of the PP chain. If the
Sun’s density were increased by a factor of two, by how much would the triple-α reaction
rate increase? If the Sun’s temperature were increased by a factor of two, by how much
would the triple-α reaction rate increase?

7. The energy generation rates for the PP chain and the CNO cycle are:

εPP '
2.4× 104ρX2e−3.380/T 1/3

9 erg g−1s−1

T 2/3
9

(82)

εCNO '
4.4× 1025ρXZe−15.228/T 1/3

9 erg g−1s−1

T 2/3
9

(83)

In these expressions, T9 is the temperature in units of 109 K and ρ is the density in units
of g cm−3. Assume that the Sun’s central density and temperature are 100 g cm−3 and
1.5× 107 K, respectively, and that X = 0.73, the helium mass fraction Y = 0.25, and the
“metals” mass fraction is Z = 0.02. Assuming that the Sun gets 90% of its luminosity
from the PP chain and 10% from the CNO cycle, what fraction of the Sun’s total mass is
participating in nuclear fusion?

8. Given the expressions above, show that the scaling relation you quoted in question 3 is
roughly correct at Solar density and temperature.

9. At what temperature are the reaction rates for the PP chain and CNO cycle equal? As-
sume solar abundance (X = 0.73, Y = 0.23, Z = 0.02) and a central density of 100 g cm−3.
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Given that temperature scales with mass as M0.22, what mass does this correspond to?

10. Sirius B, the first white dwarf discovered, has a mass a 1 M�, density of 106 g cm−3,
temperature of 107 K, and luminosity of 0.03 L�. Assume that the entire luminosity is
produced by hydrogen fusion to calculate an upper limit on X . Use the equations for the
energy generation rates of the P-P chain and CNO cycle. Assume XCNO = 1.

6.11 Stellar Structure questions

1. Estimate the ideal gas pressure and radiation pressure at the center of Sirius B. Compare
these values with the ideal gas pressure and radiation pressure at the center of the Sun
(you can assume a fully ionized hydrogen core for simplicity).

2. The equation of hydrostatic equilibrium is dP/dr = −GMrρ/r2, where Mr is the mass
interior to a radius r. Derive this equation by equating the inwards force due to gravity
to the outwards force due to pressure.

3. Starting with the equation of hydrostatic equilibrium, estimate the pressure at the cen-
ter of the Sun by evaluating at r = R/2, where R is the radius of the Sun, and assuming
constant density. How does this estimate compare to the ideal gas and radiation pressure
calculated in equation 1? What might be responsible for the discrepancy?

4. What is the virial theorem? Show that the virial theorem works for a point mass m in a
circular orbit around a mass M .

5. Use the virial theorem to derive the Jean’s mass, or the minimum mass needed for a
cloud to collapse under the force of gravity, in terms of temperature and density. You may
assume the cloud is composed purely of hydrogen.

6. Assume that a diffuse cloud composed entirely of hydrogen has a temperature of 10 K
and number density of 103 cm−3. What is the Jean’s mass? Assuming uniform density,
what is the Jean’s radius (the maximum radius needed for collapse)?

6.12 Stellar Evolution Questions

1. Assume that the number of stars with different masses is determined by the Salpeter
initial mass function where dN/dM ∝ M−2.35. Assuming that there are 300 billion stars
in our galaxy, calculate the number of stars with masses less than 1 M�, between 1 and
10 M�, and greater than 10 M�.

2. Describe the lifetimes, masses and end products for 1 M�, 10 M�, and 30 M� stars.
Sketch the paths that they will take on the HR diagram over their lifetimes. What are the
fractional lifetimes spent on the main sequence and after the main sequence?
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7 Basic Statistics for Astronomy

These notes are designed to be an introduction to statistical analysis used in astronomy. It
is by no means a rigorous introduction to basic statistics but is designed to be a practical
one. That means that certain fundamental concepts have been ignored. Additionally,
there are a number of things that I provide that aren’t going to be covered, and I make
note of those sections; they are there entirely for your use. As with any mathematics, the
notation takes some getting used to.

Much of the statistics presented here can be found in some form in Gregory’s Bayesian
Logical Data Analysis for the Physical Sciences, which provides an excellent perspective of
statistics as it relates to probability, shows both frequentist and Bayesian methodologies,
and has excellent examples often related to astronomy. There are other books containing
a wide range of basic mathematical support, such as Boas’ Mathematical Methods in the
Physical Sciences or Korn and Korn’s Mathematical Handbook for Scientists and Engineers
that I recommend as concise reference material.

7.1 Basic Tools and Jargon

Some useful phrases. Note that many of these will not show up here but I supply them
anyway in case you have questions or want to look further for yourself.

• Random variables

• PDF, CDF, characteristic function

• Mean (arithmetic, geometric, harmonic), median, mode, sample vs population mean

• Moments, Central Limit Theorem

• Time series analysis: power spectrum, autocorrelation (or autocovariance) function,
structure functions

• ARMA, Markov processes

• Frequentist, Bayesian, Likelihood

• Confidence Intervals

• Degrees of freedom, null hypothesis
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7.2 Probability

Random variables: Random variables assign numbers to events:

a → X(a)

event → number (84)

(Cumulative) Distribution Function (CDF): The CDF provides the probability that given
events a, X(a)<−x, i.e.,

FX(x) = P{X <−x} (85)

Properties:

1. FX(x) is a monotonically increasing function of x.

2. F (−∞) = 0, F (+∞) = 1

3. P{x1<−X <−x2} = FX(x2)− FX(x1)

Probability Density Function (PDF): We see these most often. They describe the probability
of a given value (sort of, see point 1).

fX(x) =
dFX(x)

dx
(86)

Properties:

1. fX(x)dx = P{x<−X <−x+ dx}

2.
∫+∞
−∞ fX(x)dx = FX(∞)− Fx(−∞) = 1

Note that random variables need not be continuous. Consider a coin flipping, X can
either be 1 for heads, −1 for tails. Then:

fX(x) =
1
2 [δ(x+ 1) + δ(x− 1)] (87)

FX(x) =
1
2 [Θ(x+ 1) + Θ(x− 1)] (88)

where δ is a Dirac delta function and Θ is the Heaviside step function.

Also consider a Gaussian distribution with mean µ and variance σ2, often written as X ∼
N (µ,σ2):

fX(x) =
1√

2πσ2
exp

(
−1

2
[x− µ]2

σ2

)
(89)
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We’ll get to the mean and variance shortly but you’re probably at least somewhat familiar
with the concepts already.

An example figure of the Maxwell-Boltzmann distribution, whose PDF is given by:

fV (v) =

√(
m

2πkT

)3
4πv2e−

mv2
2kT =

√
2
π

v2

x3 e
− v2

2x2 (90)

where x2 = kT/m. Below is a plot for x = 5.

We can use this picture to illustrate two ways of quantifying the “average” value of the
distribution. One is the median, which splits the distribution equally into a lower and
upper 50% probability. You can use the CDF to easily read off this value (the x value
where y = 0.5). The other is the “mode”, which is the most likely value, which can be
obtained from the peak of the PDF. In the case of the Maxwell-Boltzmann Distribution,
the mode is vp =

√
2x and the median is 1.0877vp.

Empirical Distribution function: This is worth mentioning briefly from a practical stand-
point. If you sort your measurements Xi (i ∈ 1, 2, · · · ,N ), you can estimate the CDF such
that you start at zero from negative infinity, and for every one of N measurements, you
increase the CDF by 1/N at each Xi. You’ll end at positive infinity with a value of 1 and
you’ll get some kind of multi-step-function looking thing at the end. This approach is
easier than estimating the PDF in that you typically need to define bins for your data, and
although there are ways around it, it is problematic.

Moments: We use brackets to denote the expected value, the average of an ensemble.
Therefore, the mean of X is simply 〈X〉.

For an arbitrary power n, the n-th (raw) moment is

E[Xn] ≡ 〈Xn〉 =
∫
dxxnfX(x) (91)
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The expected value of X is the mean, i.e. x̄ = 〈X〉. The variance is σ2
x =

〈
X2
〉
− 〈X〉2.

You may also see central moments defined as µn =
〈
(X − 〈X〉)n

〉
, where we are simply

subtracting the mean prior to finding the expected value.

Two higher-order moments you may see are the skewness and kurtosis. The skewness de-
scribes if there is a tail to the distribution (positive skewness implies a tail in the distribu-
tion at higher values, as with the Maxwell-Boltzmann distribution), whereas the kurtosis
describes how “peaked” the distribution is. Moments are useful in comparing distribu-
tions without actually knowing the PDFs. They are also useful because often calculations
of moments are vastly easier than calculations of full PDFs.

Functions of a random variable: We can map one random variable onto another random
variable after some transformation X → g(X). That is, we will transform the variable X
by some function y = g(x). The property that probability is conserved will be useful:

|fY (y)dy| = |fX(x)dx|

→ fY (y) = fX(x)

∣∣∣∣∣dxdy
∣∣∣∣∣

=
fX(x)

|dy/dx|
=

fX(x)

|dg(x)/dx|

=
fX(g

−1(y))

|dg(g−1(y))/dx|
(92)

In the last step, we’ve written the PDF of Y purely as a function of y, which makes some
sense.

Consider an example in which we want to scale and shift a random variable, i.e. g(x) =
ax+ b. Then:

Y = g(X) = aX + b

=⇒ dg

dx
= a

and x = g−1(y) =
y− b
a

=⇒ fY (y) =
fX(x)

|dg(x)/dx|
=

fX(g
−1(y))

|dg(g−1(y))/dx|
=

1
a
fX

(
y− b
a

)
(93)

This is how random distributions are generated on a computer, by transforming a uni-
form distribution of random numbers (what the computer can generate) into a specific
distribution (normal, exponential, etc.).

Let’s consider a slightly different example. Suppose we want to generate exponentially-
distributed numbers on our computer, i.e., we want fY (y) = exp(−y) (where y >− 0), and
we start with a uniform distribution:

f(x) =

{
1, 0<−x<− 1;
0, otherwise. (94)
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Let’s choose y = g(x) = − ln(x). Then:

dg

dx
= −1

x
and x = g−1(y) = exp(−y)

=⇒ fY (y) =
fX(g

−1(y))

|dg(g−1(y))/dx|
=

1
| − 1/ exp(−y)| = exp(−y) (95)

Therefore, if we generate uniformly distributed values and take the negative natural log-
arithm of them, we will get exponentially-distributed numbers.

Joint Random Variables: I’m going to rush through this subsection but thought it would
be good for you to at least have a minimal reference. For two random variables, we can
write the joint distribution function as

FXY (x, y) ≡ P
{
X <−x,Y <− y

}
(96)

whose joint (2D) PDF is

fXY (x, y) ≡ ∂2FXY (x, y)
∂x∂y

. (97)

If the variables are independent, then we have fXY = fX(x)fY (y). Generally, we can
obtain the 1D PDF of one of the variables by integrating the joint PDF over the other
variable,

fX(x) =
∫
dyfXY (x, y). (98)

We can write the joint probability in terms of a conditional probability, that is, a proba-
bility of one thing happening given another. Usually this is written as fX(x|c) where this
reads “the probability of x given c. I write c to mean “constant” but there’s no need for
the value to be constant. Technically, we could write the Gaussian PDF as fX(x|µ,σ)! In
terms of the joint PDF

fXY (x, y) = fY |X(y|x)fX(x) = fX|Y (x|y)fY (y). (99)

Here, fY |X(y|x) and fX|Y (x|y) are conditional probabilities (e.g. the first is the probability
of Y given X = x), and fX(x) and fY (y) are the marginal distributions. You often see
the joint PDF and the marginal PDFs in multidimensional likelihood plots. Your model
may contain many parameters and the peaks in probability are some complex surface in
that space. It is often simpler to numerical integrate over each of the dimensions until
your left with 1D PDFs for all of your parameters. Below is an example of a 5D parameter
space.

Each of the contour panels show a 2D marginalized distribution, and the diagonals show
the 1D marginalized distributions. You can imagine that if the probability has strange
shapes over the parameter space, the marginalized 1D distributions might not be the best
way to tell where your maximum likelihood truly is, since integrating over a dimension is
reducing the information. In this case it’s probably okay.
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Algebra of Random Variables: How can we manipulate multiple random variables? First,
let’s consider the sum of two independent variables Z = X + Y . Without proof (you can
work this out from the CDFs), the PDF of Z is the convolution of the PDFs of X and Y :

fZ(z) = fX(x) ∗ fY (y) =
∫
dxfX(x)fY (z − x) =

∫
dyfX(z − y)fY (y) (100)

We’ve substituted in for y = z−x in the third form and x = z− y in the fourth form. Both
forms are valid and sometimes it is easier to do an integration one way than the other.
I’ve written the integration variables explicitly different but remember that in reality they
don’t matter.

Now let’s consider the product of two independent variables Z = XY . The product
distribution is (again without proof)

fZ(z) =
∫
dxfX(x)fY (z/x)

1
|x|

=
∫
dyfX(z/y)fY (y)

1
|y|

(101)

Remember that if the random variables are not independent, the covariance between
them must be accounted for.

7.3 Error Propagation

Propagation of uncertainty can simply be considered an extension of basic calculus. We
have some quantity X with errors and we would like to know how the uncertainty trans-
forms to some quantity Y = f(X). We can look at the Taylor expansion:
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Y = f(X) = f(X0) +
df

dX

∣∣∣∣∣
X0

(X −X0) + · · ·

→ Y − Y0 ≈
df

dX

∣∣∣∣∣
X0

(X −X0)

→ ∆Y =
df

dX

∣∣∣∣∣
X0

∆X

→ σY =
df

dX

∣∣∣∣∣
X0

σX (102)

As an example, the figure on the next page shows Y = lnX . Then, dY /dX = 1/X which
implies that σY = σX/X . Therefore, if you have a measurement that is X = 5.2+− 0.5,
we would expect that Y = lnX +−σX/X = 1.6+− 0.1. Because of the asymmetries in
the ln function, one could consider asymmetric errors as well (as in the figure), which is
generally true.

Useful aside: Significant figures are also very important here but often misunderstood.
Rather than repeat all of the rules associated with significant figures, it’s important to talk
about what they really are: they are the figures (digits) that are significant. It’s often easy
to forget that. The significance comes from how well you “believe” you can measure a
quantity and then propagate the uncertainties in those quantities through.

Graphically, you can see that an error in X will transform to an error in Y this way:

Let’s say that you have a measurement which is a function of two variables, i.e., Z =
f(X,Y ) and we have errors on X and Y . We’ll have something similar to before except
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using partial derivatives:

∆Z =
∂Z

∂X
∆X +

∂Z

∂Y
∆Y

→ σ2
Z =

(
∂Z

∂X
σX

)2
+

(
∂Z

∂Y
σY

)2

=

(
∂Z

∂X

)2
σ2
X +

(
∂Z

∂Y

)2
σ2
Y (103)

Note that I’ve added in quadrature now (because variances always add). There are a few
ways to think about this:

1. Graphically, we’d have some function Z = f(X,Y ) and let’s for now say that X
and Y are independent. The ∆Z that you travel is some distance away from your
measurement, and that distance depends on the distances ∆X and ∆Y . Therefore,
the Pythagorean Theorem applies

2. You can show that when you add two Gaussians together, the variance of the final
distribution will be the sum of the variances of the original two Gaussians. This
mimics the process of adding two measurements with Gaussian errors.

3. More broadly, you can easily show that < (X +−Y )2 >=< X2 > + < Y 2 >, if X and
Y are independent.

Of course, we can generalize to multiple variables using this formalism.

I will provide some basic rules. There are a number of good examples on the wikipedia
page for propagation of uncertainty. Assume that X and Y are independent. If they are
not, you hve to account for the covariance between the parameters.

Basic Rules:

• Z = aX +− bY → σ2
Z = a2σ2

X
+− b

2σ2
Y

• Z = XY or X/Y → σ2
Z

Z2 =
σ2
X

X2 +
σ2
Y

Y 2

• Z = Xc → σ2
Z =

(
cXc−1σX

)2
=
(
c
Z

X
σX

)2
=⇒ σ2

Z

Z2 =
(
cσX
X

)2

Always remember: variances add!

7.4 Time Series Analysis

I thought it would be worthwhile to include some information on time series analysis.
None of this will be discussed later and is included primarily as a reference, so if you’d
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like to skip over it, that’s perfectly fine. I would strongly recommend taking a look at it
though at some point, and feel free to ask me any questions.

A time series can simply be thought of as multiple realizations of some stochastic process,
i.e. x(t) ∼ X for all t. For example, a time series of white, Gaussian noise is just x(t) ∼
N (0,σ2

x) for all t. Typically, our time series will be finite in length and discrete, so really
we measure some process xi. We can estimate the mean of N measurements of xi to be

x̂i =
1
N

∑
i

xi, (104)

which is simply the arithmetic average.

Autocorrelation Function: The ACF is a useful tool for understanding how correlated
some function is in time. Therefore, it can tell you about characteristic timescales in your
data, such as some characterstic decay or periodicity. It provides some measure of the
amount of variance as a function of time lag. The base form of the ACF of x(t) is

Rx(τ ) = 〈[x(t)− µx][x(t+ τ )− µx]〉 , (105)

where τ = t2− t1. In practical applications, subtracting the mean is important because in-
terpreting the ACFs becomes difficult as you need to account for a large triangle function
(from the convolution). Note that you may see the ACF defined as

Rx(τ ) =
〈[x(t)− µx][x(t+ τ )− µx]〉

σ2 (106)

which is a normalization that placesRx(τ ) in the range of−1 to 1, i.e. fully anti-correlated
to fully correlated (0 = not correlated).

Cross-correlation Function: This is the same idea but applied to two different functions
and time series. So if you’re looking for some kind of correlation between two objects,
you’ll want to go to something like this. Here I show it in the normalized form

ρxy(τ ) =
〈[x(t)− µx][y(t+ τ )− µy]〉

σxσy
(107)

Note that one commonly used diagnostic to compare two data sets is the Pearson corre-
lation coefficient. It is simply the CCF when τ = 0 (i.e., no temporal considerations)!

Stationary Process: This is an important point that I thought I’d include for reference. A
stationary process is one whose PDF doesn’t change in time. Wide-sense stationarity is
essentially stationarity up to second order, so the mean and the variance do not change
with time. If the process is a function of time, then it is nonstationary.

Before, we considered Rx(τ ) = RX(t2− t1). but there are processes where the ACF is not
a function of only lag (e.g. random walks, red-noise processes) and soRx(τ ) 6= RX(t1, t2),
the more general form of the ACF.
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On an additional practical note, if you are using the ACF to determine some correlation
timescale in your data and your data span is smaller than that value, your ACF will not

Structure Functions: These are less commonly used in the literature but extremely useful.

Dx(τ ) =
〈
[x(t)− x(t+ τ )]

2〉 (108)

You can think of this as the mean squared increment, or the mean squared differences at
some time lag τ . Both this and the ACF are second moment statistics. As such, they
characterize the variance in particular ways.

The SF can be used when a process is not wide-sense stationary, such as in the case be-
fore in which the ACF is nonstationary. That’s because the increments, x(t) − x(t+ τ ),
might be statonary. It is also handy because no estimate of the sample mean is needed (it
effectively removes the mean).

Note: One can also consider higher-order structure functions, which analyze higher-order
increments. This is analogous to higher-order derivatives: rather than analyzing the slope
(the increments/differences), one might want to characterize the concavity of a function,
or more.

Fourier Transforms: I will not say much about Fourier Transforms even though they are
one of the most important time series anlaysis tools, among other things. The reason they
are so useful is that they allow you to characterize a time series in frequency space (put
another way, you can characterize the frequency decomposition of a signal). If you’ve not
seen them, then it’s a pretty complicated topic to dive into.

Power spectra: These notes would be remiss without mentioning power spectral estima-
tors. The most common one is a Fourier-based method although there are others (e.g.,
maximum entropy spectral estimators, which are related to ARMA processes). Via any of
these methods, we can analyze a time series in the frequency domain, which has a huge
number of applications, conveniences, and of course hurdles. As you might expect, ACFs
and SFs are both related in various ways to Fourier-based power spectra.

7.5 Statistical Tests

Chi-squared Statistic: There are actually different kinds of chi-squared statistics you can
come up with but all relate to the same idea. Let’s say you have some measurements
(data d) with errors (σ). The general idea is that you want to be able to say how closely
the measurements match your model (m) to within the errors. So your test statistic for
figuring out how good of a model you have is:

χ2 =
∑
i

(di −mi)2

σ2
i

(109)
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which is just some measure of how far away your residual (data - model) are away from
zero, where distance is in “σ” units. That is, a measurement that is far from the model
but with large error bars contributes neglibly to this test statistic. A measurement that is
far away but with small error bars contributes greatly. As you can tell, low χ2 is typically
better.

One concern is that if I throw more parameters into my model, I can always make the fit
better. Thus, χ2 will go down. How can I tell when I’ve added too many? The reduced-
chi-squared statistic is better, in which you just divide by the number of degrees of freedom,
usually just the number of data points minus by the number of fitted parameters (be
careful, subtracting the mean counts as one degree of freedom!)

χ2
r =

χ2

Ndof
=

χ2

Npoints −Nparams − 1 (110)

The last form has the −1 to account for the sample mean separately. Generally, if χ2
r > 1,

then the fit is not fully describing the data. If χ2
r = 1 then the fit is good. If χ2

r < 1, then
your model is overfit.

Kolmogorov-Smirnov (K-S) test: Compares two CDFs, perhaps one that is empirically
measured with one that you are testing, or two empicially measured CDFs to test for
consistency.

T-test: Tests whether the means of two populations are statistically different from each
other. This could be useful in comparing two data sets, for example.

F-test: Useful when comparing different models to see which fits best (model selection).
For example, if two models have a different number of parameters (degrees of freedom), is
the inclusion of extra parameters statistically significant? See also the Akaike Information
Criterion.

7.6 Problems

Don’t spend too long on these!

1. The transverse velocity of an object at distance d with total proper motion µT =√
µ2
α + µ2

δ is

vT = 4.74 m s−1
(

µT
mas yr−1

)(
d

pc

)
. (111)

We measure the star Mintaka to be 0.21+− 0.03 kpc away with µα = −0.64+− 0.56 mas yr−1

and µδ = −0.69+− 0.27 mas yr−1. What’s the transverse velocity and its error?

2. You observe Altair to have a magnitude of mV = 0.8+− 0.1. The absolute magnitude
is MV = 2.22. How far away is Altair (with errors!). Hint: Don’t forget your distance
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modulus mV −MV = 5 log10(d/10 pc).

3. If c is a constant, what is the distribution of cN (0, 1)?

4. An example of a Gamma distribution (shape parameter k = 3.0, scale parameter θ =
0.75), both the CDF and the PDF.

Approximately what is the median? What is the mode? How do these relate to the mean
(if you work through it, it’s kθ)?

5. You observe the blazar OJ 287 40 times over the span of 20 years looking for evidence
of a periodic variation in the lightcurve and it looks like there might be one. You fit a
sine wave and obtain a chi-squared of 37. Someone else takes your data and fits two
exponential outbursts (each with three parameters, the amplitude, rise time, decay time)
and obtains a chi-squared of 35. Which model is preferred?

6. Let the exponential distribution be fX(x) = λe−λx, where x>− 0. If X and Y are drawn
from the same exponential distribution, what is the PDF of X + Y ?
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8 Bayesian Statistics

Resources: I have found these three texts to be useful over the years. There are plenty of
others out there.

• Allen B Downey, Think Bayes: Bayesian Statistics Made Simple, Green Tea Press (2012)

• Phil Gregory, Bayesian Logical Data Analysis for the Physical Sciences: A Comparative
Approach, Cambridge University Press (2010)

• William M. Bolstad, Understanding Computational Bayesian Statistics, Wiley (2009)

8.1 Introduction

Bayesian probability theory defines probability as a measure of the degree of belief in an
outcome or proposition. This is in contrast to frequentist theory which defines probability
as a ratio of instances of occurrence against the total number of trials. The frequentist
definition restricts probability statements to propositions about random variables. The
Bayesian definition is more robust, as it can apply to any logical proposition.

There are two fundamental tasks of science: model selection and parameter estimation
(or measurement). For the first we wish to make statements about the probability that a
hypothesis or model is correct. This is a natural statement in the Bayesian framework. In
the frequentist framework this statement is much harder. Instead can must ask: what is
the probability (frequency) we would observe this outcome, if our model were incorrect?
If the resulting probability (sometimes called a ‘p-value’ in this context) is small, then the
model is likely to be correct. There are other frequentist model selection techniques, but
all require performing many identical observations to tease out the long term frequency
of occurrences, which can be problematic. In Bayesian statistics we just directly calculate
the probability that a model is correct.

For parameter estimation frequentist results are often presented in terms of confidence
intervals. For example a star’s mass may be estimated to be (1.40+− 0.15)M�, where the
uncertainty represents a 90% confidence interval (assuming a particular distribution of
measurement uncertainty). This means that if many new, independent measurements are
made, 90% of new measurements would fall in this range. This is not the same as there is a 90%
probability that the true mass is in this range. In Bayesian statistics the we directly compute
the probability distribution function for the parameter. There is no hidden assumption
that the measurements follow a normal (or any other) distribution. And the Bayesian
90% credible interval really does mean there is a 90% probability that the true mass is in
the given range.
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8.2 Probability

The basic mathematical definitions of probability are as follows. A probability, p, must
fall into the range [0, 1], where 0 and 1 correspond to absolutely false and certainly true,
respectively.

p ∈ [0, 1] (112)

Probabilities describe exhaustive outcomes: if there are several, independent probable
outcomes, the total probability of any outcome is 1. That is to say, one of the possible
outcomes must occur. This can also be stated that sum of the probability that proposition
A is true, p (A), and the probability that A is false (or ‘not A’ is true) is unity.∑

i

pi = 1 (113)

p (A) + p (notA) = 1

The probability of a proposition A can be conditional upon a second proposition B. The
probability thatA is true givenB is true is p (A | B). Because Bayesian probability applies
to any logical proposition, we can apply the usual rules of deductive logic to them:

p (A andB) = p (A) · p (B | A) (114)
p (A orB) = p (A) + p (B)− p (A andB) (115)

The logical or and and operators are commutative, associative, and distributive.

By using equation (114) and the commutativity of the logical and we can derive Bayes’
Theorem:

p (A | B) =
p (A) · p (B | A)

p (B)
(116)

This doesn’t seem like a terribly exciting result, but it is incredibly useful.

Cookie Problem

There are two indistinguishable cookie jars.

• Jar 1 has 20 chocolate cookies and 20 vanilla cookies.

• Jar 2 has 10 chocolate cookies and 30 vanilla cookies.

You randomly select a jar, then randomly take a cookie from that jar. The cookie is vanilla.
What is the probability you are holding Jar 2?2

2shamelessly adapted from Think Bayes, A. Downey
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Solution: First, we write the question in terms of a conditional probability: the probability
of holding Jar 2 given that we got a vanilla cookie. Now we use Bayes’ Theorem:

p (J2 | v) =
p (J2) · p (v | J2)

p (v)

All of the quantities on the right-hand-side are easily calculable. We have even odds of
having selected Jar 2, so p (J2) = 1/2. The probability of getting vanilla from Jar 2 is
p (v | J2) = 3/4. The probability of a getting vanilla under any Jar is p (v) = 5/8. Finally,
p (J2 | v) = 3/5.

Using Bayes’ Theorem we rewrote the probability in terms of a likelihood function (which
tells us the probability of observing our data, v, if our model, J2 is correct) and the prior
probability for J2. The probability on the left-hand-side is called the posterior probabil-
ity, the probability after the experiment is conducted.

A Medical Test’s Accuracy

A rare condition, affects 1 in 100 000 people of your demographic group. There is a test
for the condition that is 98% accurate. This means that 98% of test takers who have the
condition test positive (the other 2% get false negative results), and 98% of those who do
not have the condition test negative (the other 2% get false positive results). You decide to
take the test and receive a positive result. What is the probability you have the condition?3

Solution: Again we use Bayes’ Theorem:

p (c | +) =
p (c) · p (+ | c)

p (+)

p (+) = p (+ | c) · p (c) + p (+ | h) · p (h)

where c is the condition, h is healthy, and + is a positive test result. We determine the
probability of getting a positive result by adding the conditional probabilities for both
health cases. Finally, we see p (c | +) ≈ 0.005.

3adapted from the excellent chapter on probability on Statistical and Thermal Physics, H. Gould and J. Tobochnik.
Problems of the “wild false positive” genre appear in almost every book on Bayesian statistics too.
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8.3 Data Analysis

Bayes’ theorem

The basic problem of data analysis is determining the degree of belief in a hypothesis H
given some observed data d. Using Bayes’ theorem this becomes:

p (H | d) =
p (H) · p (d | H)

p (d)
. (117)

We will consider each of the terms on the right-hand-side separately below.

Likelihood: L = p (d | H)

The likelihood is the probability of observing your data, if your hypothesis were correct.
This sounds backwards, but it is usually straightforward to determine (as in the cookie
problem 8.2). A likelihood assumes that the data is drawn from a particular probability
distribution function (PDF). If your data follows a known distribution like a powerlaw or
a gamma distribution this is easy.

L(x) = PDF (x)

When your data is described by a deterministic model (not a statistical one), things are
a bit different. In these cases instrument noise will still be statistical, so the likelihood is
based on the noise properties. Lets say our data, d, is built from a deterministic effect, m?,
and instrument noise, n.

d = m? + n

We propose a model for the deterministic effect m. If our model is correct (m = m?), then
the residual, r, is Gaussian noise.

r = d−m = n

And the likelihood that an individual datum is described by our deterministic model is
the likelihood that the residual is described by the noise distribution!

The likelihood for the full data set is the product of the individual likelihoods

p (d | H) =
∏
i

p (di | H) (118)

For Gaussian noise with standard deviation, σ, the likelihood is:

p (ni | H) =
1√
2π σ

exp
(
− ni

2

2σ2

)
, (119)
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Figure 18: left: a deterministic line with Gaussian noise added. middle: subtracting the correct
model from the data leaves Gaussian noise residuals. right: subtracting the wrong model leaves
non-Gaussian residuals.

so

p (d | H) =
∏
i

1√
2π σ

exp
(
−(di −mi)2

2σ2

)
=

(
1√
2π σ

)N
exp

(
−
∑
i(di −mi)2

2σ2

)
(120)

More generally the noise may defined as a covariance matrix, C. This is useful if the noise
variance changes or is correlated between samples. In this case it is convenient to write
the likelihood of equation (120) in the language of linear algebra. We define the residual
as a vector ~r → ri = di −mi

p (d | H) =
1√

(2π)N det C
exp

(
−1

2 ~r ·C
−1 · ~r

)
(121)

Prior probability: P = p (H)

The prior probability is probability your hypothesis is true, before you have conducted
your experiment. Many people feel a bit uneasy about priors. The choice of prior does
in fact affect the outcome, so how is this okay? First, frequentist methods make a myriad
of assumptions about what is known about the data. At least the Bayesian framework
lays these assumptions bare, for all to see and scrutinize. Second, given a large number of
iterative experiments the posterior converges to the correct. This point illustrates another
of Bayes’ theorem’s strengths: it is straightforward to iteratively apply Bayes’ theorem to
successive experiments.

Lets say we observe some data d1 and compute the posterior for our hypothesis, p (H | d1).
Now we collect some new data d2. What is the posterior probability forH after this? The
outcome of the first experiment is now part of our prior knowledge for the second. We
can see this by considering the posterior after observing (d1 and d2), which we leave as an
exercise for the reader in problem 8.5.

When using past posteriors as priors one must be careful not to double count data. Say
you collect 5 years of observations and compute a posterior, then you collect 2 new years
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of observations. If you want to use the 5 year posterior as a prior, the new analysis must
use only the new 2 years of data. If you conduct a joint analysis of all 7 years, you must
return to the original prior. The 7 year data set is not independent of the original 5 year
data set.

There are a few common choices for priors, when starting from scratch. If you look up a
parameter in the literature, and it’s stated with uncertainty, that should be your prior on
that parameter. For instance if x = x0 +−∆x with uncertainty at the 1σ level, then

p (x) = N (x0, ∆x2).

An ignorance prior is usually a safe choice, where all outcomes are assumed to be equally
likely. For a parameter this can be expressed as a uniform distribution. Uniform distribu-
tions are only properly defined for finite domains. This is perfect for bounded parameters
like angles

p (φ) = U(0, 2π).

For unbounded parameters you can use a trick of the normal distribution

p (x) = U(−∞,∞) = lim
ν→∞N (0, ν).

Practically, this is often achieved as

p (x) = N (0, MAX),

where MAX is the maximum int or float allowed by the computer.

In some cases a log-uniform prior is the preferred ignorance prior

p (logb x) = U(e0, e1).

This is useful when a parameter could span a large range of decades (for b = 10, 10e0 to
10e1) and you have no information about the scale of the effect. This prior is used for the
gravitational wave background amplitude in some NANOGrav analyses.

To see why this helps, we can consider a parameter x that could be anywhere in the range
0.1 to 100. Assuming a uniform prior (p(x) = const), we can compare the prior probability
that x is in the smallest (x ∈ [0.1, 1]) and largest (x ∈ [10, 100]) decades.

∫ 100
10 p (x) dx∫ 1
0.1 p (x) dx

=
90
.9 = 100

The uniform prior heavily favors the largest decade. It states that the large values are
favored over the small. In cases when we wish to detect a new phenomenon, we want
the exact opposite. We expect a small value, or else we would have detected it already! It
is these cases where the log-uniform prior is best.
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Bayesian evidence: E = p (d)

The Bayesian evidence is the probability of observing the data under any circumstances.
It is best thought of as a normalization. It can be constructed by summing or integrating
over the space of hypotheses. In most cases this is easier said than done. Explicitly this
can look like:

p (d) =
∑
i

p (d | Hi) · p (Hi) , (122)

which is exactly what one must do to normalize the posterior. The Bayesian evidence is
sometimes called the marginal likelihood as the normalization processes is equivalent to
marginalizing the likelihood over all parameters.

The evidence is often challenging to compute because the tails of the distribution can be
very important. Common numerical integration methods, like trapezoid and Simpson’s
sums, can become intractable for as few as three free parameters. Many computational
methods, such as Markov chain Monte Carlo, avoid this problem by working with ratios
of the posterior, so the evidence cancels out.

The evidence is important in problems of model selection, where multiple parameterized
models must be compared. This occurs, for example, when trying to decide whether data
are best fit by a straight line or a quadratic.

Marginalization

Sometimes we want to calculate a quantity like p (d | H), but we only know how to cal-
culate p (d | H,x). This can happen if our hypothesis is parameterized. For example, if
we are trying to fit a line to data the slope of the line will appear in the likelihood. We
can calculate the likelihood for any given x, but which x do we choose? In these cases x
is said to be a nuisance parameter. To compute p (d | H), we must first marginalize over
x. That is, we average over all possible x making the likelihood a statement about any x
instead of a single choice.

p (d | H) =
∫

dx p (x | H) p (d | H,x) (123)

Note that the average is weighted by the prior on x.

Sometimes it is possible to compute these integrals analytically, but more often than not
one must numerically integrate. As the number of nuisance parameters grows, the meth-
ods for computing these integrals must become more and more sophisticated.

For parameterized hypotheses notation likeH(x, y) is common. In the case of two param-
eters we can marginalize over one only, if we choose:

p (d | H(y)) =
∫

dx p (x | H) p (d | H(x, y)) . (124)
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Another common notation replaces the hypothesis with the parameters entirely. Using a
parameter vector, we can write the marginal likelihood (or evidence) as

p (d) =
∫
p (~x) p (d | ~x) dNx = E , (125)

where ~x is the vector of N parameters that define the model.

Parameter Estimation

In cases of parameter estimation, we want to determine the measured or best fit param-
eters from observed data. This may be the result of fitting a curve to data, where the fit
parameters correspond to physical observables. If we calculate the posterior probabil-
ity distribution (either analytically or numerically) for the parameters, then the inference
problem is a matter of interpreting this result.

The best fit parameters are not rigorously defined. The true output of the analysis is the
posterior. Any best fit or uncertainty is a summary of the full result. Many prefer the
mean to report as the best fit parameter, calculated

〈x〉 =
∫
x p (x | d) dx. (126)

where p (x | d) is the posterior probability of parameter, x, given the data, d.

When the posterior is computed numerically it can be challenging to compute the mean,
especially if there are many fit parameters. In these cases it is more convenient to report
the median with the added benefit that the cumulative sums used to compute the median
will produce credible intervals too. The median, x50%, is found by inverting

0.50 =
∫ x50%

−∞
p (x | d) dx. (127)

One can perform a similar inversion to find any percentile of the posterior.

To state the uncertainty on the parameters credible intervals are used. For a 90% credible
interval we compute the 5% and 95% percentiles of the parameter. It is becoming more
common to quote a median with pseudo-1σ uncertainty by computing the 18%, 50%, and
84% percentiles. This gives a 66% credible interval which is approximately the size of a
1σ frequentist confidence interval. One can compute upper or lower limits by similarly
integrating the posterior.

Another commonly quoted best fit is the maximum probability parameters. These are
sometimes abbreviated as MAP for maxima a posteriori. The MAP is easy to calculate, and
it ensures the best fit parameters come from the same point in parameter space. Indi-
vidually computing the median or mean for each of several parameters independently
can lead to a worse combined result. This is rare and usually only happens when there
are nontrivial correlations in the parameters. In any case, the MAP simultaneously maxi-
mizes all parameters, and can never have this problem.

69



0 2 4 6 8 10
parameter x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ob

ab
ilit

y

MAP
median
mean
90% CI

0 2 4 6 8 10
parameter x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 99% UL

Figure 19: Example parameter estimation for a log-normal distribution. The distribution is skewed
so the mean, median, and MAP do not agree. By integrating the probability distribution we can
determine credible intervals (left) or an upper limit (right).

Model Selection

In many cases there is more than one hypothesis or model that fits the data to some ex-
tent. How do we decide which is preferred? A commonly used method is the maximum
likelihood ratio. In this method one computes the likelihood of the best fit parameters
for each model and compares. This method has an important shortcoming: it ignores the
complexity of the models. A model with more free parameters should always achieve a
better fit. So why not fit 10 data points with a 10th order polynomial? It fits perfectly
every time. This complexity consideration is sometimes referred to as the Occam factor.

Bayesian analysis naturally takes care of the Occam factor by using the marginal likeli-
hood ratio or evidence ratio (same thing). The marginalization integral takes into account
the probability across the whole prior volume, penalizing models with many or widely
ranging parameters.

The probability for a modelHi is calculated from Bayes theorem

p (Hi | d) =
p (Hi) p (d | Hi)

p (d)
(128)

If we want to compare two models, 0 and 1, we can compute the odds ratio

O1,0 =
p (H1 | d)
p (H0 | d)

=
p (H1)

p (H0)

p (d | H1)

p (d | H0)
=
p (H1)

p (H0)
B1,0 (129)

It is common to break the odds ratio into the prior odds ratio and the marginal likelihood
ratio or Bayes factor, B1,0.

B1,0 =
p (d | H1)

p (d | H0)
(130)

It is typical to report Bayes factors rather than full odds ratios, as the priors on various
models are usually seen as a personal choice. In the case that there is no a priori reason to
favor either model, there prior odds ratio is 1 and the odds ratio is the Bayes factor.
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Table 1: Comparing Bayes factors to frequentist ‘σ’.

Bayes factor, B probability, p n σ
3 0.75 1.15σ

10 0.91 1.69σ
100 0.99 2.58σ
370 0.997 3σ

1 744 277 0.999 999 4 5σ

After computing the odds, we can reverse engineer the probability for a particular model.
Starting from the definition of probability (equation 113), and using the definition of
Oi,0 = p (Hi | d) /p (H0 | d), we can show that

p (Hi | d) =
Oi,0∑
iOi,0

. (131)

For two models O0,0 = 1 so

p (H1 | d) =
O1,0

1 +O1,0
=

1
1 + 1

O1,0

Table 1 compares Bayes factors, their probability for two model comparison, and the fre-
quentist σ used to summarize p-value style model selection. A Bayes factor less than 10
is pretty weak evidence.
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Figure 20: Measured and modeled spectrum. The amplitude of the modeled spectrum matches that
of the simulation that was used to generate the data.

8.4 Examples

Model Selection: Is there a spectral line?

We have some noisy data containing a possible novel spectral line feature. The spectrum
is measured as a temperature anomaly, dT , from the mean observed temperature in each
frequency channel. Our instrument has 64 frequency channels and is known to have
white, Gaussian radiometer noise at a level of σN = 1 mK.

Some theory predicts the line will have a gaussian shape:

dT = T0 exp
(
−(ν − ν0)2

2σL2

)
,

where T0 is the amplitude of the feature that according to the theory can range from 0.01-
100 mK. The frequency ν is measured in channel number for our instrument, and the
theory says line should appear in channel ν0 = 37 with width σL = 2.

Of course, this theory could be wrong. In which case we should expect to see only the
radiometer noise in our data. If we collect the data shown in Fig 20 with our instrument,
what does it say about the theory?

We begin by stating our hypotheses. Let H1 be there is a spectral line as described by the
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theory, and let H0 be there is no spectral line. We wish to calculate the odds ratio between
these two hypotheses. Since we have no a priori reason to favor one or the other we set the
prior odds between the hypotheses to 1, and the odds ratio reduces to the Bayes factor

O1,0 = B1,0 =
p (d | H1)

p (d | H0)
. (132)

First, we calculate the likelihood for the noise only model,H0. We know the properties of
the radiometer noise (white, Gaussian), so

p (d | H0) =
1√

2π σN
exp

(
−
∑
di

2

2σN 2

)
. (133)

Next, we calculate the likelihood for the line model, H1. Under H1 the data in the i-th
frequency channel is given by di = dTi+ ni, where dTi is the modeled temperature. After
subtracting the modeled line the residuals are noise, so the likelihood is

p (d | H1,T ) =
(

1√
2π σN

)2
exp

−∑(di −mi)
2

2σN 2

 (134)

mi = dTi = T exp
(
−νi − ν02

2σL2

)
.

To compute p (d | H1) we must first marginalize over the nuisance parameter, T .

p (d | H1) =
∫

dT p (T | H1) p (d | H1,T ) (135)

Because T can fall into a huge range, [10−2, 102], we adopt a log-uniform prior

p (log T | H1) =
1

log Tmax − log Tmin
(136)

The companion Jupyter notebook4 walks through the numerical calculation of these ex-
pressions for the data shown in Fig 20. The final result is an odds ratio ofO1,0 ≈ 124. This
means the line model is favored over the noise only model at 124 : 1 or about 99.2%. This
is good, but not definitive evidence.

Parameter Estimation: What is the best fit value of T?

After determining the odds for the spectral line being present, we can now calculate the
best fit amplitude for the feature. We effectively calculated the posterior for T (assum-
ing the spectral line model) during the model selection process. By Bayes’ theorem it is
proportional to the integrand of equation (135).

p (T | H1, d) ∝ p (T | H1) p (d | H1,T )
4https://www.github.io/paulthebaker/bayes talk
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Figure 21: Posterior distribution function (PDF) for spectral line amplitude, T . The median and
90% credible interval are shown along with the input T0 used to simulate the data.

This function is determined numerically for the data shown in Fig 20 in the companion
Jupyter notebook. We integrate this function numerically to determine the median and
90% credible interval: T = 1.7+− 0.7.
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8.5 Problems

Monty Hall

A favorite game from a classic a game show presented the contestant with three doors.
Behind one was a fabulous prize, while the others held only junk. First, the contestant
chooses a door. Next, the host opens one of the unchosen doors to reveal junk5. Finally,
the contestant is given the opportunity to switch doors, taking home whatever prize is
behind the chosen door.

1. What is the initial probability that the prize is in the door selected by the contestant?

2. After the host opens a door, what is the probability that the prize is in the remaining
door?

3. What if there were 5 doors (still one prize), and the host opened three to reveal junk
before the contestant’s opportunity to switch?

Multiple observations

Show that

p (H | d1, d2) =
p (H | d1) · p (d2 | H)

p (d2)
,

where d1 and d2 are data from two independent observations and a comma is used to
denote the logical and.

Cookie Jar Redux

Starting from the Cookie Problem of example 8.2, you draw a second cookie from the
same jar, and it’s vanilla too. What is the probability you are holding Jar 2 now?

Using Hubble’s law to find distance

Hubble’s law relates the distance to a galaxy, x, to its apparent recessional velocity, v, due
to the expansion of the universe.

v = H0 x,

where H0 is the Hubble constant.
5The host knows which door the prize is in and always reveals junk. If the contestant selected the prize door, he

opens one of the others at random.
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You observe a galaxy with a recessional velocity of v = 100+− 5 km/s, where the uncer-
tainty represents 1σ Gaussian noise. Determine the posterior probability for the distance
to this galaxy given the velocity observation. Write down the equation for p (x | v). Set
up any integrals, but don’t evaluate them. In each case your answer should be a function
of v only.

1. What is p (x | v), assuming a point estimate of H0 = 70 km/s/Mpc? Remember to
account for the uncertainty in v.

2. What is p (x | v), accounting for 1σ uncertainty in H0 = 72+− 3 km/s/Mpc6 by
marginalizing? Start by determining p (x | v,H0).

3. What is p (x | v), accounting for uniform uncertainty in H0 = 70+− 10 km/s/Mpc?

Using Hubble’s law to find distance, calculated

Warning: this problem requires a computer.

1. Evaluate and plot the posteriors from parts 1, 2, and 3 of the previous problem (8.5).

2. Determine the median and a 90% CI on the distance, x, for each case.

3. What if you use the Hubble constant from the Planck mission7, H0 = 67.7+− 0.5
km/s/Mpc?

Spectral line redux

Warning: this problem requires a computer and is very challenging.

1. Redo the calculation of the odds for the spectral line problem from section 8.4. This
time let there be uncertainty in the predicted channel for the line ν0 = 37+− 5, where
the uncertainty is given at the 1σ level.

2. Use the joint posterior on T and ν0 to determine the best fit amplitude and channel
for the line.

6V. Bonvin, et al. “H0LiCOW – V. New COSMOGRAIL time delays of HE 0435–1223: H0 to 3.8% precision
from strong lensing in a flat ΛCDM model”. MNRAS, 465 (4): 4914–4930 (2016).

7Planck Collaboration, P.A.R. Ade, et al. “Planck 2015 results – XIII. Cosmological parameters”. A&A, 594 A13
(2016).
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9 Kepler’s Laws and the Virial Theorem

Almost all of the material in these notes comes from Carroll & Ostlie, Chapter 2 as well
as Chapter 8 of Taylor’s Classical Mechanics. You can find more detail on the historical
context of Kepler’s laws in almost any introductory astronomy textbook. You can find
more details on the derivations of Kepler’s Laws and the virial theorem in most classical
mechanics texts. Applications of Kepler’s laws and the virial theorem are regularly found
in texts on galaxies (e.g. Sparke & Gallagher) or stars (e.g. Kippenhan & Weigert).

9.1 Kepler’s Laws

In 1609, Kepler wrote down the first two laws of planetary motion as regards the solar
system, with the third law following ten years later:

1. A planet orbits the Sun in an ellipse, with the Sun at one focus of the ellipse.

2. A line connecting a planet to the Sun sweeps out equal areas in equal times.

3. The average orbital distance of a planet cubed is proportional to its sidereal period
squared: P [yr]2 = a[AU ]3

Once Newton developed his law of gravity, it was possible to write these laws in a more
general form applicable to motion of any two bodies moving under the influence of grav-
ity:

1. The path of the reduced mass about the center of mass under the influence of gravity
is a conic section.

2. The rate of change of the area swept out by a line connecting a planet to the focus of
an ellipse is constant under any central law force.

3. P 2 = 4π2

G(m1+m2)
a3

While the derivations of these laws are all in Carroll & Ostlie, I will give a brief synopsis
of them here with a focus on aspects pertaining to their use.

Kepler’s First Law

The derivation of Kepler’s First Law depends on the conservation of angular momentum
and uses the definition of gravitational acceleration as well as the concept of the reduced
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mass. The reduced mass is defined as:

µ =
m1m2
m1 +m2

(137)

where m1 and m2 are the masses of the two bodies in question, say the Earth and the Sun.
In this framework, the reduced mass is orbiting around the center of mass of the system.
To derive the orbit, r(φ), set the acceleration equal to the central force plus the centrifugal
force:

µr̈ = F (r) +
l2

µr3 (138)

where l is the angular momentum of the system. We want to rewrite this equation in terms
of φ. We start by substituting u = 1/r, and convert d/dt into d/dφ using the equation for
the angular momentum. This gives us:

u′′(φ) = −u(φ)− µ

l2u(φ)2F (139)

Now we can substitute the gravitational force into this equation and solve for u. After
going back to r, we get the equation for our orbit:

r(φ) =
c

1 + εcosφ
(140)

where c = l2

Gm1m2µ
, and ε is the eccentricity. If you convert this to Cartesian coordinates,

for ε < 1, you can show that this is an ellipse. The eccentricity is related to the total energy
such that:

E =
(Gm1m2)2µ

2l2 (ε2 − 1) (141)

If the total energy is less than zero, then we have a bound system and ε has a value
between 0 and 1 yielding an elliptical orbit. If the total energy is exactly zero, then ε = 1
and we have an orbit that is a parabola. Finally, if the total energy of the system is greater
than zero, then we have ε > 1 and a hyperbolic orbit. We will discuss some properties of
these orbits in class.

Kepler’s Second Law

Kepler’s second law holds for all central force laws, since they all conserve angular mo-
mentum. As a planet moves along its orbit, regardless of the exact orbital shape, it sweeps
out an area equal to:

dA =
1
2r

2dθ (142)

Taking the time derivative of both sides yields:

dA

dt
=

1
2r

2dθ

dt
=

1
2rvθ (143)
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and since r and vθ are perpendicular:

dA

dt
=

1
2
l

µ
(144)

Since l is constant for all central forces, the area swept out in a given time is also constant.

Kepler’s Third Law

To start we will do a simplified derivation using Newton’s laws and assuming a circular
orbit (which is a good approximation for the solar system). To start a planet in orbit
around the Sun must balance the gravitational force with the centripetal force:

GMm

r2 =
mv2

r
(145)

This simplifies to
GM

r
= v2 (146)

and we can further simplify given that v = 2πa
P and given that the radius is constant for a

circular orbit. Therefore:

P 2 =
4π2a3

GM
(147)

where M in this case is the total mass of the system, that is M = m1 +m2.

In general, we will start with Kepler’s first two laws, remembering that the area of an
ellipse is πab. Combined with Kepler’s Second law, the orbital period is:

P =
A

dA/dt
=

2πabµ
l

(148)

Now, we can square both sides and relate the semi-major and semi-major axes to each
other using b2 = a2(1− ε2):

P 2 = 4π2a
4(1− ε2)µ2

l2
(149)

We can also relate the semi-major axis to c via a = c
1−ε2 and substitute in the expression

for l yielding:

P 2 = 4π2a
3cµ2

l2
=

4π2

GµM
a3 (150)

and we now have the familiar equation for Kepler’s third law. While in the solar system
one body is much larger than the other (for planets orbiting the Sun or moons orbiting
planets), Kepler’s third law applies to any two body system so it applies to binary stars
or binary galaxies as well.
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9.2 The Virial Theorem

The virial theorem applies to systems of particles and describes the statistical properties
of that system averaged over time. To derive this, consider the general equation of motion
for a star in a cluster:

Fi = ṗi (151)

and when we sum over all the stars:

∑
i

d

dt
(mi~vi) = −

∑
i,j

Gmimj

|~xi − ~xj |3
(~xi − ~xj) +

∑
i

~Fext,i (152)

Note that the sum of the gravitational forces is only done for i 6= j. We now take the dot
product of both sides with ~xi and consider just the left hand side of the equation (before
summation):

d

dt
(mi~vi) · ~xi =

1
2(m

d~vi
dt
· ~xi +m~vi · ~vi) =

1
2
d2

dt2
(mi ~xi · ~xi) (153)

Rearranging Equation 153, and plugging it back into Equation 152, we get:

1
2
∑
i

d2

dt2
(mi ~xi · ~xi)−

∑
i

mi~vi · ~vi = −
∑
i,j

Gmimj

|~xi − ~xj |3
(~xi − ~xj) · ~xi +

∑
i

~Fext,i · ~xi (154)

Now, we can identify each of these terms:

1
2
d2I

dt2
− 2KE = PE +

∑
i

~Fext,i · ~xi (155)

where I is the moment of inertia of the system, KE is the total kinetic energy of the system,
and PE is the total potential energy of the system. Since the virial theorem applies to the
system when averaged over time, we are basically saying that the appearance of this
system doesn’t change over time. This implies that the moment of inertia of the system
will remain constant over time. Therefore, we get:

2〈KE〉+ 〈PE〉+
∑
i

~Fext,i · ~xi = 0 (156)

This is the scalar virial theorem. The tensor virial theorem has the same structure, but says
that the virial theorem holds in each dimension separately. There are many applications
of the virial theorem, but most astronomical problems assume that there are no external
forces that need to be considered:

2〈KE〉+ 〈PE〉 = 0 (157)
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9.3 Problems

1. Given a planet with an eccentric orbit, show that the orbital velocity is highest at
perihelion and lowest at aphelion.

2. Sketch out how the velocity of a planet with an eccentric orbit varies over the period
of its orbit. How does this change with the eccentricity?

3. Sketch out how the velocities of the eight planets of the solar system compare as a
function of their distance.

4. Consider the sketch below. Which orbit best represents the orbit of the Earth? Which
orbit best represents that of a comet? How can you tell?

5. Show that Keplers Second Law holds for a particle of mass m with angular momen-
tum l moving under a force: F (r) = − k

r2 +
λ
r3

6. Consider a spacecraft that is orbiting the Sun following the Earths orbital path.
Given what you know about the energy of orbits, how would you get the space-
craft into orbit around Mercury? What about Neptune?

7. Using the scalar virial theorem, what happens to the temperature of a star cluster
(not subject to external forces) as it loses stars? Explain why this is.

8. Use the virial theorem to derive the total mass of a cluster of stars.

9. Use the tensor virial theorem, explain how vx, vy, and vz will vary for a flattened
disk galaxy. How about for a galaxy shaped like a football? What would a star
cluster look like if vx = 3vy = 2vx? (Do not worry about the stability of such a
cluster.)
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10 Special Relativity

Derived from Chapter 4 in Ostlie and Carroll: “The Theory of Special Relativity”

10.1 Fundamental postulates

Special relativity is built upon two postulates, which were borne out of the finding that
Maxwell’s equations do not change under certain transformations (called Lorentz trans-
formations). Einstein argued that we can make deeper sense of this finding if the following
two postulates hold true:

1. The laws of physics are identical for all observers moving at a constant velocity. In
other words, there is no experimental result that would be modified by the motion
of an experimenter whose velocity is fixed.

2. The speed of light in vacuum is the same for all observers, regardless of their motion.

10.2 Time dilation

To get a better intuition about what these postulates imply, consider the following physi-
cal scenario:

Suppose you are on a train and you have a funny kind of clock (Fig. 22), in which one
tick is the time it takes a laser beam to strike a mirror at the top of the train, and the next
tick is when it returns to the laser pointer at the bottom of the train. Since light moves at
a constant speed, each tick will be the same length of time. We can define this length of
time as ∆t, or one “tick” for the observer on the train.

Now let’s imagine we are an observer on the ground, watching a this train passes by from
left to right at speed v, as pictured in Fig. 23. Then since the light moves at a constant but
not infinite speed, the mirror at the top of the train moves as the light comes up and
bounces off of it. This means that the light moves upward at an angle. We will define the
length of time it takes for the light to travel the height of the train as ∆t′.

As illustrated in Fig. 24, the distance that light travels for the person on the train as c∆t,
the distance light travels for the person on the ground as c∆t′, and finally, we know that
the train moves v∆t′ during a tick of the clock as measured by the observer on the ground.
We can then use the Pythagorean theorem to relate the different ticks.
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Figure 22: Laser “clock”, as seen by stationary observer looking at stationary train.

Figure 23: Laser “clock”, as seen by stationary observer watching train move past at speed v.

Then after a bit of math, we can quickly derive an expression for ∆t′ in terms of ∆t:

∆t′ =
∆t√

1− (v/c)2
(158)

As described in Fig. 25, this yields an alarming conclusion: ∆t′ > ∆t for v > 0! Thus
moving clocks tick more slowly. The factor 1√

1−(v/c)2 is a common one in relativity, and is
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Figure 24: Definition of basic quantities.

Figure 25: Net conclusions of our calculation.

sometimes known as the relativistic gamma factor.
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So moving clocks ticking more slowly is pretty strange, but could we have predicted
this? I think we could have. We know the speed of light is not infinite, and the same no
matter how fast you move. THAT is weird. Think about it: could you imagine a car that
doesn’t accelerate but always travels 10 miles per hour, no matter if you run toward it or
away from it? That is really really weird, and in order for it to stay at 10 miles per hour,
something has to give about space—miles and time—hours. It turns out that moving
clocks must tick more slowly, and moving objects will be squished in the direction they
move.

This intuitive understanding under our belts, please continue by reading Sec. 4.2 through
the end of Chapter 4 in Ostlie & Carroll.

10.3 Problems

1. Fill in the missing steps in the derivation between the bottom of Fig. 24 and Eq. 158.

2. Derive Eq 4.33 from Eq. 4.27 (same as Eq. 158) Fill in all missing steps.

3. Defining the force F = dp
dt , Taylor expand Eq. 4.44 to derive Newton’s second law

and the first nonzero relativistic correction. Using between one and two sentences,
describe the implication of the sign of this correction.
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11 General Relativity

In addition to these notes, you should also read Chapter 17 of Carroll and Ostlie.

11.1 Einstein’s field equations

The field equations of General Relativity relate mass and energy, represented by the
energy-momentum tensor Tµν , to spacetime curvature, represented by the Einstein ten-
sor Gµν . The Einstein tensor is constructed from the Ricci curvature tensor Rµν and the
curvature scalar R through the relationship

Gµν = Rµν −
1
2gµνR , (159)

where gµν is the metric tensor. The Ricci tensor and curvature scalar are both formed by
using the metric tensor to contract the indices of the Riemann curvature tensor, Rαβγδ,
which in turn is constructed from the metric tensor and its derivatives, so that the space-
time curvature is fully determined by the metric tensor. The metric tensor is simply a
collection of coefficients that describe how a unit of length will vary in each spacetime
direction, as measured from each location within that spacetime. The Einstein tensor is
not the only tensor that can be constructed from curvature-related quantities, but it is the
simplest choice that obeys local Lorentz invariance, meaning that physical phenomena
won’t depend on the choice of inertial frame.

The energy-momentum tensor has several contributions. The Ttt component gives the
energy density, the Tit components give the momentum density in the i direction, and the
Tti components give the energy flux in the i direction. The Tij components describe the ith

component of the force per unit across a surface with a unit normal in the j direction, so
that the diagonal spatial components Tii are simply the pressure in each spatial direction.

The field equations can be compactly stated as

Gµν =
8πG
c4

Tµν : 8πTµν , (160)

where in the last expression, we have adopted “geometrized” units where G = c ≡ 1.
This convention allows spatial and temporal quantities to be described in the same units,
which are also the units of mass. We can relate times and lengths in geometrized and
conventional units using

t[s] = 4.92× 10−6
(
M

M�

)
t[M ] , (161)

r[km] = 1.5
(
M

M�

)
r[M ] . (162)
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11.2 Principle of equivalence

One of the foundational principles of relativity is the assumed equivalence between in-
ertial mass (the “m” in F = ma for relating any force on an object to the acceleration it
induces) and gravitational mass (the “m” in F = GMm/r2 ≡ mg). This principle asserts
that gravity accelerates all objects equally (i.e. the two m’s cancel and a = g), and that the
effects of gravity are absent in free fall. If we define a freely falling frame x′ and the Earth
frame x such that

x′ = x− 1
2gt

2 , (163)

then the acceleration in the freely falling frame is given by

a′ ≡ ẍ′ = ẍ− d2

dt2

(1
2gt

2
)
= a− g = 0 , (164)

so that Newton’s laws without gravity apply in free fall. Since freely falling objects appear
to move along curved paths due to gravity (i.e. we see parabolic trajectories in the Earth
frame), gravity must be a curving of “straight” paths, as would be defined from a purely
spatial perspective, rather than from Einstein’s spacetime perspective.

11.3 Spacetime interval and general covariance

Curvature is most easily expressed as a change in the separation, ds, between nearby
points in spacetime. This change, which we refer to as the spacetime interval or, more
simply, the metric, is described by the metric tensor gµν and is given by

ds2 = gµνdx
µdxν , (165)

where dxµ and dxν are simply coordinate intervals, so that the metric tensor tells us how
physical separations vary as functions of the coordinates we have chosen to describe the
spacetime. The metric tensor therefore depends on the coordinate system that we use,
although physically observable quantities (e.g. energy fluxes) will not depend on the
choice of coordinates. This independence of results on the choice of coordinates is referred
to as general covariance, and was another guiding principle for Einstein in his search for
his field equations.

To further illustrate this concept, we can consider a straight path in two dimensions.
In Cartesian coordinates, the metric is simply ds2 = dx2 + dy2, so that the metric ten-
sor is just gµν = diag(1, 1). However, in polar coordinates, ds2 = dr2 + r2dθ2 and
gµν = diag(1, r2), so that the metric tensor appears to depend on the coordinates, which
would suggest that the spacetime is curved. However, we know that this metric tensor
just describes flat space in polar coordinates, so its coordinate dependence is just an ar-
tifact of this choice of coordinates. On the other hand, if we consider a “straight” path
within the curved two-dimensional surface of a sphere, then ds2 = R2dθ2 +R2 sin2 θdφ2
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and gµν = diag(R2, R2 sin2 θ). For this case, there is no coordinate transformation that
can yield a metric tensor which does not depend on the coordinates, so this surface is
truly curved. Generally, one must calculate all of the components of the Riemann cur-
vature tensor and show that they all vanish in order to determine whether an appar-
ently coordinate-dependent metric tensor is really describing flat spacetime in some non-
Cartesian coordinate system.

We also note that the spacetime interval can take on positive or negative values. Events
with a vanishing spacetime interval are said to be null- or lightlike-separated, because
photons travel along paths that balance their space and time intervals to always yield
a vanishing spacetime interval. Events with positive spacetime intervals are said to be
spacelike separated, meaning they are separated moreso in space than they are in time.
This means that even photons could not travel between these events, so they are not in
causal contact with each other. Finally, events with negative spacetime intervals are said
to be timelike separated, meaning they are more separated in time than they are in space,
and photons, as well as massive particles, could travel between these events.

11.4 Effects of curved spacetime around a point mass

For a point mass, the most natural coordinate system will be spherical-like. Flat spacetime
in standard spherical polar coordinates has a metric given by

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 = −dt2 + dr2 + r2dΩ2 . (166)

To describe a spherically symmetric curved spacetime, we would introduce two unknown
coefficients such that

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2 , (167)

where spherical symmetry requires that the angular content of the metric be unmodified
from the case of flat spacetime, and that the coefficients A and B can only depend on r.
Since a point mass has no spatial extent (i.e. all mass is contained in a singularity), the
vacuum form of the field equations, Gµν = 0, must be satisfied. By using the metric to
calculate the Einstein tensor, and requiring that the resulting equations agree with New-
ton’s law far from the point source, we can determine the functional form for A and B.
The result is the Schwarzschild metric, given by

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2 . (168)

If we are interested in the behavior of objects moving within this curved spacetime, then
we need to consider objects moving along timelike intervals (i.e. with negative spacetime
intervals). In this case, it is convenient to introduce a “proper” time such that dτ2 = −ds2,
and

gµν
dxµ

dτ

dxν

dτ
= −1 . (169)
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For an observer at a fixed (r, θ, φ) outside a spherical object, the coordinate time and
proper time are related by

dt

dτ
=

√
− 1
gtt

=
(

1− 2M
r

)−1/2
, (170)

where dt can be considered the time interval measured by a distant observer, and dτ can
be considered the time interval measured locally at r.

Similarly, the frequency of an emitted photon as measured by distant observers will differ
from that measured locally, a phenomenon known as gravitational redshifting. The two
measurements are related by

f∞ = fr

√
1− 2M

r
. (171)

Through a similar (but longer) calculation, if we were to consider an object moving peri-
odically in r and θ, we would expect from Keplerian dynamics that the object would also
have to complete a periodic cycle in φ over that same period (i.e. we would expect closed
orbits). However, orbits in General Relativity do not close in this way, so objects actually
advance in φ by more than 2π over the course of a periodic cycle in r. This extra accu-
mulated phase dφGR is referred to as periastron precession or periastron advance, and is
given by

dφGR = 6π M

a(1− e2)
(172)

for an orbit with semi-major axis a and eccentricity e. This precession (referred to as
perihelion advance when occurring around the Sun) had been observed in Mercury’s
motion long before Einstein developed his theory, and in fact he checked eat iteration
of his developing theory to see if they correctly postdicted the observed 43”/century in
phase accumulated by Mercury’s orbit around the Sun.

Figure 26: Perihelion advance of Mercury (not to scale).
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Another closely related phenomenon is the bending of light rays as they pass a massive
object. This was the first prediction of General Relativity that was spectacularly confirmed
in 1919 by Sir Arthur Eddington and his team when they observed a slight shift in the
apparent positions of background stars near the edge of the Sun during a solar eclipse.
The shift depends on the mass of the gravitating object and the impact parameter, b, of
the light ray, and is given by

dφ =
4M
b

= 1.75′′
(
M

M�

)(
R�
b

)
. (173)

When light comes close to a gravitational field and is bent, it is also delayed due to the
gravitational time dilation/redshifting that occurs. This effect is known as the Shapiro
time delay, and is given by

dt = 10µs
12− ln

( b

R�

)2 (1 AU
r

) , (174)

where in addition to the impact parameter, the distance r between the gravitating object
and the observer’s location is also required, since the effect is a result of integrating along
the path of the light ray as it climbs out of the gravitational potential.

Figure 27: Bending of light and the shift in the apparent position of background stars (not to scale).

Both light bending and Shapiro delay occur for gravitational lenses. Gravitational lenses
occur when an intervening massive object acts as a lens, focusing light from a distant
source and enlarging the angle it subtends on the sky. The angular scale of the lensed
image, referred to as the Einstein radius, is given by

θE =

√
4MDLS

DSDL
= 1′′

√√√√( M

1011 M�

)(
DLS

DL

)(Gpc
DS

)
, (175)

where DLS is the distance between the source and the lens, DS is the distance between
the observer and the source, and DL is the distance between the lens and the observer.
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Figure 28: Gravitational lensing.

11.5 Effects of spin

If a spinning object is orbiting a point mass, it will have its spin axis reoriented. This
effect, akin to periastron precession, is called geodetic precession, and is given by

dφgeodetic = 2π
1−

√
1− 3M

r

 , (176)

where r is the radius of the orbit, and dφgeodetic describes the rotation of the spin axis
around the direction of the orbital angular momentum.

If the gravitating object itself is spinning, then the spacetime is no longer described by the
Schwarzschild metric, but is instead described by the Kerr metric. The most direct ob-
servational consequence of this rotation is the phenomenon of Lense-Thirring precession,
whereby an orbiting object accumulates an additional phase shift due to the dragging of
the object by the spacetime itself as it swirls around the spinning object. The amount of
phase shift is given by

dφLT =
2JT
r3 =

2IΩT
r3 , (177)

where J is the spin angular momentum of the gravitating object, I is its moment of inertia,
and Ω is its angular frequency.

Both geodetic precession of an object’s spin and Lense-Thirring precession due to Earth’s
rotation were observed by Gravity Probe B, which was essentially a well isolated and ac-
curately measured gyroscope in orbit around the Earth. The observing team was able to
measure a value of dφgeodetic = 6.6′′/yr and dφLT = 0.042′′/yr, although the latter mea-
surement required a Herculean data analysis effort to overcome a larger than expected
amount of measurement noise due to electrical charge buildup on the gyroscope.
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11.6 Gravitational Waves

When spacetime is disturbed, it can return to equilibrium by emitting gravitational waves.
These waves manifest themselves as an oscillating change in the separation between
nearby points in spacetime. This change is typically characterized as a strain akin to a
mechanical strain describing the fractional change in length of an object under force. If
the distance between two points is initially given by x, and this distance changes by an
amount ∆x under the influence of a passing gravitational wave, then the strain due to
that gravitational wave is simply h = ∆x

x .

If we define the quadrupole moment, or deviation from spherical symmetry, of a distri-
bution of mass to be

Iij =
M

3

∫
(3rirj − r2δij)d

3r , (178)

where δij is the Kronecker delta, then the strain is hij ∼
Ïij
r . If I ∼ MR2 is the typical

magnitude of Iij ’s components for a distribution of mass M with a scale of R, then Ï ∼
2MṘ2 + 2MRR̈. If R̈ = 0, then h ∼ Ï

r ∼
Mv2

orb
r , where vorb is the orbital velocity of the

mass distribution and r is the distance between the mass and the observer.

If we consider a binary on a circular orbit, we can describe the binary either as two objects
orbiting around the center of mass, or as an effective single body orbiting around a fixed
object. In the effective case, the single body has a mass given by the reduced mass of
the system, µ = m1m2/M , where M = m1 +m2 is the total mass of the binary. The
single object orbits at a distance a = r1 + r2 from the fixed object, with r1 = am2/M and
r2 = am1/M being the distances of each object in the binary from the center of mass.

We can easily calculate the components of Iij , which are given by

Ixx = m1(r1 cosφ)2 +m2(r2 cos(φ+ π))2 = µa2 cos2 φ =
1
2µa

2(1 + cos 2φ) , (179)

Iyy = m1(r1 sinφ)2 +m2(r2 sin(φ+ π))2 = µa2 sin2 φ =
1
2µa

2(1− cos 2φ) , (180)

Ixy = Iyx = m1r
2
1 sinφ cosφ+m2r

2
2 sin(φ+ π) cos(φ+ π)) (181)

= µa2 sinφ cosφ =
1
2µa

2 sin 2φ , (182)

where φ = ωt is the orbital phase, so that Ïij is given by

Ïxx = −2µa2ω2 cos 2φ , (183)
Ïyy = 2µa2ω2 cos 2φ , (184)
Ïxy = Ïyx = −2µa2ω2 sin 2φ , (185)

and the strain is given by

hij = 2GÏij
c4r

= −4Gµa2ω2

c4r

cos 2φ sin 2φ 0
sin 2φ − cos 2φ 0

0 0 0

 ≡
h+ h× 0
h× −h+ 0
0 0 0

 (186)
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where h+ and h× are the two gravitational wave polarizations, and we note that the
gravitational-wave frequency is twice the orbital frequency. For a binary with an orbital
separation R, we can use Kepler’s law to eliminate the frequency and find

h ∼ |h+| ∼ |h×| ∼ 10−21
(

M

10 M�

)2 (20M
R

)(100 Mpc
r

)
. (187)

There are three different experimental efforts to observe gravitational waves from differ-
ent sources. Ground-based interferometers like LIGO can observe strains of 10−23 and
are sensitive to stellar mass binaries, future space-based interferometers like LISA can ob-
serve strains of 10−21 and are sensitive to massive black-hole binaries, and pulsar timing
arrays like NANOGrav can observe strains of 10−15 and are sensitive to supermassive
black-hole binaries.

11.7 Problems

1. A muon has a half-life τ = 2.19× 10−6 s. If it is located at r = 2.001M , just outside
the event horizon of a Schwarzschild black hole, how long would it be expected to live
according to a distant observer?

2. What is the escape velocity for a particle orbiting a Schwarzschild black hole at r = 6M?

3. If observers can detect a perihelion advance of 1”/century, which planets would have
detectable precession?

4. If an object is tidally disrupted at some critical differential tidal force
(
dF
dr

)
crit

, relate this
to the Newtonian tidal force for an orbit at r = 6M , which is the innermost stable circular
orbit. From this, determine how a black hole’s ability to disrupt an object depends on the
black hole’s mass.

5. If a gravitational wave h ∝ exp(−(t− to)2/σ2) sinωt passes two test particles separated
by ∆x, what is their separation after the gravitational wave passes?

93



12 Compact Objects

The following notes are based on the following textbooks: Carroll & Ostlie’s Modern
Astrophysics, Arnab Choudhuri’s Astrophysics for Physicists, and Shapiro & Teukolsky’s
Black Holes, White Dwarfs and Neutron stars. Interested readers should refer these books
for a detailed explanation.

12.1 White Dwarfs, Neutron stars and Black Holes

Compact objects are the end products of stellar evolution. The primary factor determin-
ing whether a star ends up as a white dwarf, neutron star, or a black hole is believed to
be due to the star’s mass. All these compact objects differ from normal stars in two fun-
damental ways. Firstly, they cannot support themselves against gravitational collapse by
generating thermal pressure (since they do not burn nuclear fuel). Therefore, to balance
the gravitational self-attraction, a nonthermal source of pressure is required (because the
star will eventually cool). This pressure arises quantum mechanically from the Pauli prin-
ciple, which makes a gas of cold fermions resist compression (known as the degeneracy
pressure). In a white dwarf, the gravity is balanced by the electron degeneracy pressure.
However, once the density of matter approaches nuclear density, the degeneracy pressure
of neutrons becomes important (at such high density, inverse beta decay converts protons
into neutrons). A neutron star is thus supported by the degeneracy pressure of neutrons.
Black holes, on the other hand, are completely collapsed stars, i.e., stars that could not
find any means to hold back the inward pull of gravity and therefore collapsed to sin-
gularities. Secondly, the compact objects have much smaller radii compared to normal
stars and hence, much stronger surface gravitational fields. Some general properties of
neutron stars and black holes are discussed below:

• Electron degeneracy pressure: Let us derive the degeneracy pressure for non-relativistic,
degenerate electron gas. This can be done by combining Pauli’s exclusion principle
and Heisenberg’s uncertainty principle. Let us assume that the gas is contained in
a cubic box with dimensions4x,4y,4z and corresponding momenta of px, py, pz.
The uncertainty principle implies that

4xpx ≈ 4ypy ≈ 4zpz ≈ h̄ (188)

Making a (slightly unreasonable) assumption that all electrons have the same mo-
mentum, we get the pressure as

P =
1
3nepv (189)
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where ne is the electron density. For a completely degenerate gas,

4x ≈ n−1/3
e =⇒ px ≈ h̄n1/3

e (190)

Given that the electron gas is uniformly distributed, each direction is equally likely
and thus,

px = py = pz =⇒ p2 = 3p2
x =⇒ p =

√
3px ≈

√
3 h̄n1/3

e (191)

putting the electron density in terms of atomic number (Z), atomic mass number
(A), mass density (ρ) and the mass of Hydrogen atom (mH ), we get

ne =
[(
Z

A

)
ρ

mH

]
(192)

Using the above expression of ne and the fact that the velocity for non-relativistic
electrons is given by v = p/me in the expression for pressure, we get

P ≈ h̄2

me

[(
Z

A

)
ρ

mH

]5/3
(193)

For relativistic, degenerate gas, we have v = c and the degeneracy pressure is given
by

P ≈ h̄2

me

[(
Z

A

)
ρ

mH

]4/3
(194)

• Maximum mass: Chandrasekhar worked out that there is a maximum mass for a
white dwarf, now generally referred to as the Chandrasekhar limit and is estimated
to be 1.44 M� (for derivations, refer to the above textbooks). Neutron stars are also
subject to a maximum mass, just like the white dwarfs. The mass radius relation is
R ∝ M−1/3 for all degeneracy pressure-supported stars; so as the mass increases,
the radius shrinks and the density rises. How well can we measure the neutron
star masses and radii? Masses can be straightforward if the star is in a binary. The
masses of some neutron stars have been measured with the highest precision of
any objects outside the Solar System. These are the ones for which post-Keplerian
parameters such as pericenter precession, Shapiro delay, and orbital decay due to
gravitational radiation can be measured. The maximum mass could be much higher
than 2 M�, and the radius consistent with this range of masses could run from 10
–15 km for a canonical 1.4 M� star.
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• Neutron star structure: A rough estimate of the characteristic radius and density of
a neutron star can be made by considering that it is held up by neutron degeneracy
pressure. The neutrons in the star are (marginally) non-relativistic, so the pressure
is given by the general formula derived for a non-relativistic degenerate gas as

P =

(
3
π

)2/3
h2

20mn5/3 (195)

where m is the mass per particle and n is the number density of particles. If we
consider that the star is composed of pure neutrons, then m = mn = 1.67 × 1024 g
and n = ρ/mn. Plugging this in the above equation, we get

P =

(
3
π

)2/3
h2

20m8/3
n

ρ5/3. (196)

This pressure must be sufficient to hold up the star. To see what this implies, we
approximate the structure of the star as a polytrope8. This is a reasonably good
approximation since the pressure in most of the star is dominated by non-relativistic
degeneracy pressure, corresponding to an n = 3/2 polytrope. Using the relationship
between central pressure and density appropriate to polytropes,

Pc = (4π)1/3BnGM
2/3ρ4/3

c , (197)

whereBn is a constant that depends (weakly) on the polytropic index n. Combining
this with the pressure-density relation for a degenerate neutron gas, we get

(
3
π

)2/3
h2

20m8/3
n

ρ5/3 = (4π)1/3BnGM
2/3ρ4/3

c (198)

ρc =
4
9(20πBn)3G

3M2m8
n

h6 (199)

We can also make use of the relationship between central density and mean density
for polytropes.

Dn =
ρc
ρ

= ρc
4πR3

3M (200)

8Polytropes are self-gravitating gaseous spheres that were, and still are, very useful as crude approximation to more
realistic stellar models. An equation of state of the form P = κργ , where γ and κ are constants, is called polytropic. It
is customary to define the corresponding polytropic index, denoted by n, as γ = 1 + 1

n . Note that n does not have to be
an integer. In the case that γ = 5/3 we get n = 3/2.

96



where Dn = −[(3/ξ1)(dΘ/dξ)ξ1 ]
−1 is another constant that depends on the poly-

tropic index (for details, cross ref. polytropic relation and Lane-Emden equation).
Substituting this in for ρc, we get

3M
4πR3Dn =

4
9(20πBn)3G

3M2m8
n

h6 (201)

R =
3D1/3

n

20(2π)4/3Bn

 h2

Gm8/3
n

 1
M1/3 (202)

Plugging in the values appropriate for an n = 3/2 polytrope (Dn = 5.99 and Bn =
0.206) gives

R = 14
 M

1.4M�

−1/3

km. (203)

This R is only slightly higher than what we get using more sophisticated models
(∼10 km) for neutron stars that have had a chance to cool off from their initial forma-
tion and become fully degenerate. The slight discrepancy is due to several reasons:
(i) the fluid is not purely neutrons; there are some protons too, which do not con-
tribute to the neutron degeneracy pressure, (ii) the neutrons are not too far from be-
ing relativistic and this reduces their pressure compared to the fully non-relativistic
pressure we have used above, and (iii) the neutron matter also has a considerably
more complex structure than a simple degenerate electron gas due to the nuclear
forces between the neutrons.

• Magnetic fields: Another important property of neutron stars is that they are super-
conductors, i.e., they have nearly infinite electrical conductivity. Therefore, electric
currents flow with essentially no resistance and magnetic fields diffuse very little
in superconductors; fields do not diffuse in or out of them. Therefore, the magnetic
field within them is said to be “frozen into the fluid” meaning that any field line that
passes through a given fluid element is trapped in that fluid element and moves
and deforms with it. A magnetic field that is deformed (stretched or compressed)
responds by applying a restoring “Lorentz force” on the fluid. The magnetic flux
through a small region of surface area A on the initial core was ABi. For the fi-
nal neutron star, this surface area has shrunk in proportion to the radius squared.
Therefore,

R2
iBi = R2

fBf =⇒ Bf =

Ri
Rf

2

Bi (204)
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Thus when the core collapses to make a neutron star, the magnetic field that is
trapped in the core is enhanced by a factor of (Ri/Rf )2.

• Pulsars and rotation: The strong magnetic field is particularly important when cou-
pled with another aspect of neutron stars – rapid rotation. Neutron stars are rapid
rotators for exactly the same reason they are strongly magnetized: conservation dur-
ing collapse, in this case conservation of angular momentum. Consider a massive
star core rotating with an initial angular velocity ωi and an initial moment of inertia
Ii = CiMR2

i , where Ci is a constant or order unity that depends on the core’s density
structure. Its angular momentum is then given by

L = Iiωi = CiMR2
iωi (205)

As it collapses it must conserve angular momentum, so its angular momentum after
collapse is

L = Ifωf = CfMR2
fωf = CfMR2

iωi =⇒ ωf ≈ ωi

Ri
Rf

2

(206)

Thus the angular velocity of the core is enhanced by the same factor of ∼106 as the
magnetic field. The period P = 2π/ω decreases by the same factor. The combination
of a strong magnetic field and rapid rotation gives rise to pulsation. Refer to the
textbooks (Carroll & Ostlie or Lorimer & Kramer) for pulsar properties.

• Schwarzschild Radius: In some cases, the stellar core of a star that explodes as a
supernova can be pushed above the maximum neutron star mass. This can hap-
pen if not all of the stellar envelope is ejected and some of it falls back onto the
proto-neutron star. In such a case, the neutron star may accrete the material and
exceed its maximum mass. Another possibility is that a very massive star may en-
counter the pair instability region in the (log ρ, log T ) plane before it gets to the
iron photo-disintegration instability region. In this case, the collapsing core may be
more massive than 2–3 solar masses and the result will again be a core that exceeds
the maximum possible neutron star mass. If such a core is created, nothing can stop
it from collapsing indefinitely.

As the star collapses, the escape velocity from its surface rises:

vesc =

√
2GM
R

(207)

Once the radius is small enough, this velocity exceeds the speed of light. The critical
velocity at which this happens is called the Schwarzschild radius:
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Rsch =
2GM
c2
≈ 3 M

M�
km (208)

The Schwarzschild radius is the effective size of the black hole. Nothing that ap-
proaches within that distance of the mass can escape, since nothing can move faster
than light. Because nothing that happens inside the Schwarzschild radius can ever
influence events outside it, the Schwarzschild radius is called an event horizon.

• Accretion power: The luminosity of a neutron star is given by

L = 4πR2σT 4. (209)

Neutron stars are born very hot, T > 1010 K, but after ∼1 Myr, the star cools and
the temperature drops to ∼ 106 K. For R = 10 km and temperature ∼ 106 K in the
luminosity equation above, L = 0.2 L�. This is dim enough to make it quite hard
to detect any but the nearest neutron stars by thermal emission. However, we can
detect neutron stars and black holes when they emit nonthermally (e.g. pulsars) or
if they are powered by accretion of material from another body. Consider a neutron
star of radius R that accretes an amount of mass dM in a time dt. The material falls
from rest at infinity, so it has zero energy initially. Just before it arrives at the surface,
its potential and kinetic energies must add up to zero, so

1
2v

2dM − GMdM

R
= 0 =⇒ 1

2v
2 =

GM

r
(210)

When the material hits the surface and stops, its kinetic energy is converted into
heat, and then it is radiated away. In steady state, all the extra energy must be
radiated and hence, the amount of energy released is

dE =
1
2v

2dM =
GMdM

R
(211)

The resulting luminosity is just the energy per unit time emitted via this process:

Lacc =
dE

dt
=
GM

R
Ṁ (212)

Accretion luminosity increases as the radius of the star decreases, which means that
it can be a much more potent energy source for compact things like neutron stars.
For example, suppose a star accretes at a rate of 10−10 M� yr−1 such that it gains
roughly 1 M� of mass over the age of the universe. For a white dwarf of R = 0.01
R�, L ≈ 0.1 L� – high enough to be brighter than just an isolated white dwarf nor-
mally is. For a neutron star of R = 10 km, it would be 100 L� and for a black hole
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of R ≈ 3 km, it approaches 1000 L�. This process cannot produce arbitrarily high
luminosities for the same reason that stars cannot have arbitrarily high luminosities:
the Eddington limit. For any object in the depths of space, there is a maximum lumi-
nosity beyond which radiation pressure will overcome gravity and material outside
the object will be forced away from it rather than falling inwards – Eddington lumi-
nosity. The Eddington limit is

LEdd =
4πcGM

κ
(213)

where κ is the opacity. In high-energy accretion scenarios, we make a useful approx-
imation on the basis that the accreting material is mostly ionized hydrogen and the
opacity is provided by Thomson scattering. The cross-section will then come almost
exclusively from radiation pressure on the electrons, but the mass lies almost exclu-
sively in the protons. The Eddington luminosity depends only on the mass of the
radiating object. The approximation is to set κ = σT/mp and we get the following
approximation for the Eddington luminosity:

LEdd =
4πcGMmp

σT
(214)

If we require that Lacc < LEdd, then we have

GM

R
Ṁ <

4πcGM
κ

=⇒ Ṁ <
4πcR
κ

. (215)

Thus, there is a maximum accretion rate onto compact objects.

12.2 Problems

The following questions are from Chapter 16 of Carroll and Ostlie.

1. Estimate the neutron degeneracy pressure at the center of a 1.4 M� neutron star (take
the density to be 1.5×1015 g cm−3) and compare this with the estimated pressure at the
center of Sirius B?

2. (a) At what speed do relativistic effects become important at a level of 10%. In other
words, for what value of v does the lorentz factor γ become equal to 1.1?
(b) Estimate the density of the white dwarf for which the speed of a degenerate electron
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is equal to the value found in part (a).

3. Consider a pulsar that has a period P0 and period derivative Ṗ0 at t = 0. Assume that
the product PṖ remains constant for the pulsar (c.f. Eq. 16.29 in CO).
(a) Integrate to obtain an expression for the pulsar’s period P at time t.
(b) Imagine that you have constructed a clock that would keep time by counting the radio
pulsars received from this pulsar. Suppose you also have a perfect clock (Ṗ = 0) that is
initially synchronized with the pulsar clock when they both read zero. Show that when
the perfect clock displays the characteristic lifetime P0/Ṗ0, the time displayed by the pul-
sar clock is (

√
3− 1) P0/Ṗ0.

4. During a glitch, the period of the Crab pulsar decreased by |∆P | ≈ 10−8 P . If the in-
creased rotation was due to an overall contraction of the neutron star, find the change in
the star’s radius. Assume that the pulsar is a rotating sphere of uniform density with an
initial radius of 10 km.

5. (a) Determine the minimum rotation period for a 1.4 solar mass neutron star (the fastest
it can spin without flying apart). Assume that the star remains spherical with a radius of
10 km.

(b) Newton studied the equatorial bulge of a homogeneous fluid body of mass M that
is slowly rotating with angular velocity (Ω). He proved that the difference between its
equatorial radius (E) and its polar radius (P ) is related to its average radius (R) by

E − P
R

=
5Ω2R3

4GM . (216)

Use this to estimate the equatorial and polar radii for a 1.4 solar mass neutron star rotat-
ing with twice the minimum rotation period found in part (a).

6. Compare the maximum angular momentum of a 1.4 M� black hole with angular mo-
mentum of the fastest known pulsar, which rotates with a period of 0.00139 s. Assume
that the pulsar is a 1.4 M� uniform sphere of radius 10 km.
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13 Cosmology

13.1 Background Material

Caroll and Ostlie Chapter 29

13.2 Other References: Books

• Barbara Ryden - Introduction to Modern Cosmology (Great first source)

• Andrew Liddle - An Introduction to Modern Cosmology ( Another great first source,
bit more brief)

• Steven Weinberg - Cosmology (Indepth overview)

• Scott Dodelson - Modern Cosmology (Focuses more on CMB)

13.3 Introduction

Cosmology is the study of the Universe on the largest scales, where even galaxies are
considered “small”. The current concordance model, the ΛCDM model, still fits all ob-
servations to very high precision. This model leads to a Universe which:

• Started with a hot big bang

• Initially went through a period of exponential expansion (Inflation)

• Continued to expand adiabatically and cool

• Cooled enough to form atoms, and created the Cosmic Microwave Background

• Began to form stars, and reionize the Universe

• Formed Galaxies, Planets, all other structures

• Became dominated by a “Dark Energy” and is again undergoing exponential ex-
pansion

Figure 29 has a nice graphic representation of our current understanding of the Universe
and how it has evolved.
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Figure 29: Current view of the history of the Universe

13.4 Expansion of the Universe: Friedmann Equations

Assuming that space is homogeneous (translationally invarient, no ‘origin’) and isotropic
( rotationally invarient, no prefered direction), leads to the Robinson-Walker Metric

ds2 = −dt2 + a(t)2[dR2
o + fK(Ro)

2R2
odω

2] (217)

where dω2 = dθ2 + sin2θdφ2, fK is a curvature function, and R = Roa(t) is the “true”
distance with Ro the co-moving distance and a(t) the scale factor. (Carol and Ostle use a
slightly different nomenclature).

Using the RW metric along with Einstein’s Equation:

Gµν =
8πG
c2

Tµν −Λgµν (218)

leads to the Friedmann Equation:(
ȧ

a

)2
=

8πGρ
3 − Kc2

a2 +
Λc2

3 (219)

and the Fluid Equation:

ρ̇+ 3 ȧ
a

(
ρ+

p

c2

)
= 0 (220)
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where ρ is the density, p is the pressure, Λ is a cosmological constant. These equations
can be used to describe how the Universe evolves based on the content within.

13.5 Problems

1. A Friedmann Equation can be derived from conservation of energy of expanding
non-relativistic shell. Use conservation of energy (Assume a constant energy to start
with of −1

2mKc
2R2

o) and an expanding shell to derive a Friedmann equation. What
is missing?

2. Derive the Fluid equation from the first law of thermodynamics and non-relativistic
matter. Again use a spherical shell of matter expanding with time.

3. Assuming Flat space, use the fluid and Friedmann equations, along with the equa-
tion of state for individual components to derive the density and scale factor as a
function of time for:

(a) A matter dominated Universe ( p = 0 )

(b) A photon dominated Universe ( p = 1
3ρc

2)

(c) A Cosmological Constant dominated Universe (p = −ρc2)

4. Write the pseudo code or procedure to solve for the evolution of the scale factor
with time with arbitrary density of photons, matter, and a cosmological constant.

5. In a Flat matter dominated universe, with Ho = 70 km/s/Mpc, how long do you
need to wait to see a galaxy change by one part in a million (first can show )

dz

dto
= Ho(1 + z)−Ho(1 + z)3(1+w)/2

and use w = 0 for matter.

6. CMB: What is the current energy density of the CMB? What is the current number
density? What is the current energy density of baryons? Number density? What
is the current number ratio of baryons to photons? What is Olber’s Paradox? If
we could ‘see’ at mm wavelengths, what would the sky look like? (compare this to
optical sky dynamic range and scales). Would Olber’s Paradox have been posited if
we saw in mm? Why/Why not?
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14 The Structure of the Universe

In addition to these notes, you should also read Chapter 27 of Carroll and Ostlie.

14.1 Global properties

On the largest cosmic scales, the Universe is homogeneous and isotropic. Homogeneity
means that there is no preferred location, so all vantage points within the Universe will
look the same. Isotropy means that there is no preferred direction, so regardless of which
direction you look, the Universe will look the same. Referring back to our General Rela-
tivity lecture, the metric on the largest scales is essentially that of flat space:

ds2 = c2dt2 − d`2 , (221)
d`2 = a(t)2(dx2 + dy2 + dz2) , (222)

where a(t) is the scale factor for the Universe, and represents the expansion of spacetime
that we observe.

On the largest scales, this expansion is accelerating due to the affects of dark energy, with
dark matter overcoming the affects of dark energy on the scale of gravitationally bound
structures. The behavior of this scale factor under the influence of dark energy and dark
matter is the central concern of cosmology. For now, we simply note that 95% of the
Universe is dark, and most of that is dark energy. There is 5x as much dark matter as
ordinary matter.

14.2 Expansion of the Universe

Dark matter and dark energy have competing effects on expansion, as characterized by
Friedmann’s equation:

1
a

d2a

dt2
= −4πG

3 ρ+
c2

3 Λ , (223)

where ρ is the total mass density (baryons + dark) and Λ is the cosmological constant
responsible (in the ΛCDM model of cosmology) for the observed accelerated expansion
of the Universe.

On scales much smaller than the Universe as a whole, but larger than the scale of bound
structure, the scale factor manifests itself through Hubbles law, whereby distant galaxies
are observed to recede from us, with a velocity that is proportional to their distance:

v =
dR

dt
= HR (224)

H ≡ ȧ

a
, (225)

105



whereH is the Hubble parameter. The recession picture doesnt work on the largest scales,
but it does give the right picture for establishing the concept of redshift z and its impact
on observed wavelengths:

z =
v

c
=

∆λ
λ

, (226)

1 + z =
1
a

. (227)

14.3 Substructure of the Universe

The large-scale structure of the Universe is made up of voids and filaments, that can be
further broken down into superclusters, clusters, galaxy groups, galaxies, and so on. Fila-
ments are threadlike structures made up of isolated galaxies, groups, clusters and super-
clusters. Voids are vast empty bubbles of empty space. The origin of filaments and voids
is the very small anisotropy present in the early Universe and visible and temperature
fluctuations in the CMB. On the whole, the density of matter is too low to overcome the
repulsion of dark energy, but overdensities above a certain density threshold can over-
come the accelerated expansion. In this context, the expansion is often referred to as
the Hubble flow, and structures dense enough to slow their expansion and eventually
collapse have disconnected from the Hubble flow. When the overdensity collapses to a
density above a critical threshold, the structure in the overdensity virializes. It is then
gravitationally stable, and ceases to collapse, ultimately former groups and clusters.

Although some galaxies fly off on their own, most are bundled into groups and clusters.
Groups are smaller, usually made up of less than 50 galaxies with diameters 1–2 Mpc. The
Local Group, in which our Milky Way is a member, is made up of ∼40 galaxies. Clusters
are bunches of 50–1000 galaxies with diameters of 2–10 Mpc. One peculiar property of
clusters is that the velocities of their galaxies appear too large for gravity alone to keep
them bunched together. This is the scale over which dark matter affects the structure
of the Universe. A great number of groups, clusters and individual galaxies can come
together to form superclusters.

14.4 Observational Evidence for ΛCDM

The principle evidence for dark energy is the agreement of the observed accelerated ex-
pansion with the exponential growth predicted by theory. The principle evidence for dark
matter is the missing matter needed to explain clustering, galaxy rotation curves, etc. Al-
ternative explanations for these exist, chief among them modifying gravity itself on large
scales where it is very weak, but these theories dont agree well with other observations,
in particular gravitational lensing.
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14.5 Problems

1. If the Universe is isotropic, why does everything appear to be receding from us in every
direction?

2. If the Universe is expanding, what is it expanding into?

3. How does the scale factor evolve with time if the Universe is matter dominated, radia-
tion dominated, or dark energy dominated?

4. Prove that a circular orbit is virialized, and discuss the behavior of a noncircular binary
in the context of virialization and time averaging.
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