Stellar - HW3
September 5, 2024, Due September 12, 2025
2 pt for each question part

- 1a) A star collapsing from initial radius to r_0 to radius r will gain potential energy and will lose potential energy. Conserve total energy using a test mass to set up an integral in dr/dt (this is v). You can integrate this expression to determine the free-fall time.
- b) What is the free-fall time for the Sun?
- c) How about for a white dwarf (assume typical values)?
- 2) The Maxwell-Boltzmann distribution is

$$f(v) = \sqrt{\left(\frac{m}{2\pi kT}\right)^3} 4\pi v^2 \exp^{-\frac{mv^2}{2kT}},$$
 (1)

but, in one dimension the function is

$$f(v_x) = \sqrt{\frac{m}{2\pi kT}} \exp^{-\frac{mv_x^2}{2kT}}.$$
 (2)

- a) Plot these functions for reasonable assumed values. What function does the 1D M-B distribution look like?
- b) Based on your answer above, what is a typical value for the standard deviation of the $H\alpha$ line from the Solar photosphere? Use whatever unit you like.
- c. (Grad students only) What fraction of Hydrogen is ionized in the Solar photosphere? Compute the quantity $n_{\rm HII}n_e/n_{\rm HI}$.
- d. (Grad students only) What fraction of all Hydrogen atoms are in the n=1 ground state in the Solar photosphere? The degeneracy of principle quantum number n is $2n^2$.(Hint: for this question, you do not need to compute the entire partition function.)