
Figure 1: A portion of the H-R diagram showing white dwarfs.

White Dwarfs

C+O Chapter 16

We know what is left behind at the end of stellar evolution. For low-mass stars (< 8 M�),
the core is left behind when the stars go planetary nebula. These cores are then white dwarfs:
very small, very hot, very low luminosity objects. High-mass stars (> 8 M�) may also leave
behind their cores, but the higher pressure results in neutron stars rather than white dwarfs.
The most massive stars can become black holes. In this section we will discuss white dwarfs
only, with the other objects discussed in the coming weeks.

Exercise

Let’s compute the basic properties of white dwarfs! Take a 20,000 K White Dwarf on the
0.5 M� line and compute its
- Radius (from the luminosity and temperature. Earth’s radius is ∼6000 km)
- Density assuming its mass is 0.5 M� (density of the Earth is ∼ 5 g cm−3 and water is
1 g cm−3)
- Central pressure (from hydrostatic equilibrium assuming constant density)

Notice that the 0.5 M� line is sloping toward the 0.01R� line. What does that imply?
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The Fermi Energy

The Fermi energy is the energy of the highest occupied state. Fermions will preferentially
fill the lowest energy states, but this filling is governed by the Pauli exclusion principle.

The Pauli exclusion principal says that no two fermions (spin 1/2 particles such as electrons,
protons, and neutrons) can exist in the same quantum state. But what is a quantum state?
It’s a set of quantum numbers (n, `,m`, s) and also a location.

For atoms, the location is the atom itself. We cannot have two s = +1/2 electrons in
n = 1, ` = 0, but it can have one with s = +1/2 and one with s = −1/2. Thus, the n = 1
shell has a maximum of two electrons. For n = 1, ` = 0 or 1 and m` = 0 or −1, 0, 1. The
n = 2 shell thus has 8 electrons (` = 0 adds 2 and ` = 1 adds 6). You already probably
knew about the Pauli exclusion principle from this application.

For a plamsa, it’s a bit trickier, but the criterion that no two fermions can share the same
quantum state sets the size scale of a deBroglie wavelength. λ = h/p.

What is the maximum energy per particle at a given temperature? For particles in a box,
the deBroglie wavelength in each dimension is λx = 2L/Nx, where the box has length L and
Nx is an integer quantum number (that doesn’t include spin). y and z are the same. We
can rewrite in terms of momemtum since p = h/λ to get px = hNx/(2L) and the same for y
and z.

Since momentum is p2 = p2x +p2y +p2z = h2(N2
x +N2

y +N2
z )/(4L2) and the energy of a particle

is ε = p2/(2m), we have
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2m
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h2
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h2N2

8mL2
(1)

Each quantum state is defined by Nx, Ny, Nz and the spin.

The total number of electrons Ne defined by positive integers Nx, Ny, Nz is

2
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3
πN3

)
, (2)

where the factor of 2 comes from the fact that quanum states N do not include the spin and
there are two possible spin states. Thus

N =

(
3Ne

π

)1/3

(3)

and finally we arrive at the Fermi energy:

εF =
h̄2

2m
(3π2n)2/3 , (4)
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where n ≡ Ne/L
3 is the number density. We switched to electrons in this derivation but of

course the expression applies to all fermions.

For fully degenerate gas at T = 0 K, all the fermion energies will be the Fermi energy. For
full ionization,

ne =

(
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nucleon

)(
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volume

)
=

(
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)
ρ

mH

(5)

Plugging back in to the Fermi energy, we find

εF =
h̄2

2m

[
3π2

(
Z

A

)
ρ

mH

]2/3
(6)

We can also express (Z/A)ρ/mH as N/V where N is now the number of particles per volume
V :

εF =
h̄2

2m

[
3π2N

V

]2/3
(7)

We see from this expression that the Fermi energy is inversely related to the mass. Thus
for fully degenerate gas, the Fermi energy is ∼ 2000 times higher for protons and neutrons
than it is for electrons. The upshot is that electrons will become degenerate before protons
or neutrons.

The N ′th particle has an energy of

EN ′ = E0 + εF|N ′ = E0 +
h̄2

2m

(
3π2N ′

V

)2/3

(8)

The total energy of a Fermi sphere of N fermions is given by:

ET = NE0 +

∫ N

0

εF|N ′ dN
′ =

(
3

5
εF + E0

)
N (9)

Therefore, the average energy per particle is given by:

Eav = E0 +
3

5
εF (10)

From the first law of thermodynamics, this internal energy can be expressed as a pressure

P = −∂ET

∂V
=

2

5

N

V
εF =

(3π2)2/3h̄2

5m

(
N

V

)5/3

. (11)

This pressure is known as the “degeneracy pressure” (often n = N/V is substituted) or

P =
(3π2)2/3h̄2

5m
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Z

A

)
ρ

mH

]5/3
. (12)
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White Dwarfs

A white dwarf is very dense: its mass is comparable to that of the Sun, while its volume
is comparable to that of Earth. A white dwarf’s faint luminosity comes from the emission
of stored thermal energy; no fusion takes place in a white dwarf and there is no further
contraction to release gravitational potential.

The nearest known white dwarf is Sirius B, at 8.6 light years, the smaller component of the
Sirius binary star. Because white dwarfs are the end point of all low-mass stars, which are
very numerous (over 97% of the other stars in the Milky Way), there should be lots of white
dwarfs in the Universe. Because they are faint, however, they are difficult to find.

Usually, white dwarfs are composed of carbon and oxygen and the progenitor mass is less
than 8 M�. Some flavors of white dwarf do have different compositions though.

If the mass of the progenitor is between 8 and 10.5 solar masses, the core temperature will
be sufficient to fuse carbon but not neon, in which case an oxygen/neon/magnesium white
dwarf may form. Although helium in most white dwarfs could be fused, this isn’t always
true for low mass stars. Stars of very low mass may accrete He from a binary companion,
and so may have He in their outer layers.

The material in a white dwarf no longer undergoes fusion reactions, so the star has no
source of energy. As a result, it cannot support itself by the heat generated by fusion against
gravitational collapse, but is supported only by electron degeneracy pressure, causing it to
be extremely dense. A white dwarf is very hot when it forms, but because it has no source of
energy, it will gradually cool as it radiates its energy. This means that its radiation, which
initially has a high color temperature, will lessen and redden with time. Over a very long
time, a white dwarf will cool and its material will begin to crystallize, starting with the
core. The star’s low temperature means it will no longer emit significant heat or light, and
it will become a cold black dwarf. Because the length of time it takes for a white dwarf to
reach this state is calculated to be longer than the current age of the universe, it is thought
that no black dwarfs yet exist. The oldest white dwarfs still radiate at temperatures of a
few thousand kelvins. hite dwarfs have an extremely small surface area to radiate this heat
from, so they cool gradually, remaining hot for a long time.

Types of White Dwarfs

Stamp collecting!
White Dwarfs can be classified based on their spectra. DA white dwarfs have hydrogen
absorption lines in their spectra. These lines are extremely pressure broadened due to the
high pressures in the white dwarf surfaces. White dwarfs are mostly carbon and oxygen, but
some do have trace amounts of hydrogen. 2/3 of all WDs.
DB white dwarfs have helium absorption lines ,but lack hydrogen. 8% of all WDs.
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DC white dwarfs have no lines, they are black bodies. 14% of WDs.

Conditions for White Dwarfs

How big are white dwarfs? From Stefan-Boltzmann,L = 4πR2σT 4. How can we estimate
the temperature? Using the colors! Let’s assume T = 104 K and L = 0.01 L�

How can we get the pressure? Using the above degeneracy pressure (which we assume is
applicable), we get ∼ 2 × 1022 N m−2. We can also use the expression derived in-class for
constant density:

Pc ≈ 2/3πGρ2R2 (13)

For the mass of the Sun and radius of the Earth, this works out to Pc ≈ 4 × 1022 N m−2,
which is ∼1.5× 106 times that of the Sun.

How about temperatures? We can make similar arguments for non-convective stars:

dT

dr
= − 3

4ac

κ̄ρ

T 3

Lr

4πr2
(14)

Your book notes that it is not radiation that carries energy to the surface, but rather electron
conduction. Oh well, close enough. The temperatures go from the surface temp to the central
temperature. The radius goes from the radius of the white dwarf to zero, so

Twd − Tc
R− 0

= − 3

4ac

κ̄ρ

T 3
c

Lr

4πR2
(15)

We can get the surface temperature from observations, and R from the above calculations.
If, however, we assume the surfact temperature is 0 K and that κ = 0.02 m2 kg−1, and we
get Tc ≈ 107 − 108 K. This temperature is plenty high for hydrogen fusion. Since white
dwarfs do not have fusion, we know that they must be largely devoid of hydrogen. What
little hydrogen they have is on the surface; the more massive elements are drawn toward
white dwarf cores.

White Dwarf Masses

We know that white dwarfs have masses of approximately that of the Sun. Obviously the
white dwarf that is produced when the Sun reaches the end of its evolution will not be 1 M�
though. The most common mass is ∼0.5 M�.

Electron degeneracy pressure is

P =
(3π2)2/3

5

h̄2

me
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Z

A

)
ρ

mH

]5/3
. (16)
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As we derived before, the central pressure is roughly

Pc ≈
2

3
πGρ2R2 . (17)

Remember, this equation assumed a constant density throughout the star or white dwarf.

Let’s equate them! The first pressure expression tells us the dependence of electron degen-
eracy pressure on the density. The second one tells us how the central pressure depends on
density and radius. This will allow us to find a relationship between the mass and radius.

2

3
πGρ2R2 =

(3π2)2/3

5

h̄2

me
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Z

A

)
ρ

mH

]5/3
, (18)

which for constant density reduces to

R ≈ (18π)2/3

10

h̄2

GmeM1/3

[(
Z

A

)
1

mH

]5/3
(19)

For a 1 M� white dwarf, R ≈ 2.9 × 106 m, which is too small by a factor of two, so our
asssumptions are not great. But, the weird (and correct) thing is that

MV = constant , (20)

where V is the volume. This is what we saw in the H-R diagram. The mass and volume of a
WD are inversely correlated: as the mass increases the radius decreases. This is a result of
the odd way that electron degeneracy works. The electrons must be more closely confined to
generate the larger degeneracy pressure required to support a more massive star. Of course,
this relationship doesn’t hold at the extremes, because as we add more and more mass the
radius would tend toward zero.

The Chandrasekhar Limit

One way to resolve this issue is to derive the maximum mass a white dwarf can have. If
we set the pressure estimate equal to the degeneracy pressure and replace the density with
ρ = M/(4/3πR3), we can simplify to get

Mmax ≈
3
√

2π

8

(
h̄c

G

)3/2 [(
Z

A

)
1

mH

]2
= 0.44 M� , (21)

if Z/A = 0.5. A precise derivation finds M = 1.44 M� for Z/A = 0.5, which is known as
the “Chandrasekhar Limit,” after the brilliant Indian astrophysicist.

This is the criterion where hydrostatic equilibrium holds, where degeneracy pressure can just
balance gravitational pressure. A mass larger than this an gravitational pressure will “win”,
collapsing the white dwarf. Therefore, the largest mass white dwarfs should be 1.44 M�, or
thereabouts after accounting for spin and metallicity.

Note that there is no temperature dependence on all of this! Electron degeneracy pressure
doesn’t depend on the temperature.
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Figure 2: The white-dwarf mass-volume relationship.

White Dwarf Cooling

Energy in white dwarfs does not escape most efficiently from photons. In fact, it is electron
conduction that provides the dominant energy transportation method. In a WD, electrons
can travel large distances before interacting with another nucleus. As a result, WDs are
basically isothermal. The only place that is not isothermal is the outer shell of material.

Your book derives an expression for the WD luminosity, but it’s kind of a tough derivation
and not terribly informative. The result is interesting though:

L = CT 7/2
c , (22)

where C is a constant that is

C = 6.65× 10−3
(
M

M�

)
µ

Z(1 +X)
(23)

So how does a WD cool? Well, the WD’s energy is thermal, and each nucleus has 3/2kT of
energy. Therefore, the thermal energy of a WD is

U =
M

AmH

3

2
kTc , (24)

where AmH is the mass of one nucleus. The characteristic timescale (not the cooling time)
is

τ =
U

L
=

3

2

Mk

AmhCT
5/2
c

(25)
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Figure 3: The temperature of WDs is isothermal out to the edge.

The time to cool is given by

−dU
dt

= L (26)

or

− d

dt

(
M

AmH

3

2
kTc

)
= CT 7/2

c , (27)

which can be integrated to find

Tc(t) = T0

(
1 +

5

2

t

τ0

)2/5

, (28)

where τ0 is the cooling timescale and T0 is the initial temperature. We can use our expression
for the luminosity to find

L(t) = L0

(
1 +

5

2

t

τ0

)7/5

, (29)

These equations tell us that the luminosity decays quickly at first, but slows its rate of change
with time.
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