
ASTR 702

Gas Physics (Chapter 3)

Stars are gas! Specifically, they are ionized gas (except in their photospheres, which do
contain some neutrals and not-completely-ionized species). We need to understand the
properties of gas, the properties of radiation, and the interaction between gas and radiation.

1 The Equation of State

An “Equation of State” is a relation that relates temperature, pressure, and density - so-
called “state variables:” P = P (ρ, T, X⃗). The most famous equation of state of course is the
ideal gas law,

P = nkT . (1)

It is vital that we understand how these state variables are related to each other.

We assume throughout this discussion that the gas is ideal, i.e. that thermal energy dom-
inates over Coulomb energy. Is this a good assumption? Let’s see! The typical Coulomb
energy per particle is:

ϵC ≈ 1

4πϵ0

Z2e2

d
, (2)

where Ze is the charge per particle and d is the distance between particles. We can estimate
d assuming a constant density:

d =

(
AmH

ρ̄

)1/3

=

(
4πAmH

3M

)1/3

R , (3)

where the mean particle mass is AmH and the stellar radius and mass are R and M . Eval-
uating ϵC/kT , the ratio of Coulomb to kinetic energy per particle, we find ∼ 0.01. The
ratio rises as Z increases, but doesn’t approach unity even for pure iron. As M decreases,
however, the ratio does go up substantially. It only approaches unity for M ≲ M−3

⊙ , which
is why we must take Coulomb interactions into account for planets, but not stars.

1.1 Pressure

To derive an equation of state, we need a general relation for pressure. Free particles exert
a pressure given by the “pressure integral:”

P = 1/3

∫
v p n(p) dp , (4)

where v is the particle velocity, p is its momentum and n(p) dp is the number of particles per
unit volume with momentum in the range p to p+dp. This famous equation is derived in the
book (I won’t repeat it here). It is a general relation that we can use for all computations
of pressure (gas/radiation/degenerate gas).
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The total pressure within a star can be derived by evaluating the pressure integral for each
gas species and adding the radiation pressure exerted by photons. Treating ions and electrons
separately:

P = Pi + Pe + Prad = Pgas + Prad . (5)

We often define β as the fractional gas pressure:

Pgas = βP (6)

Prad = (1− β)P (7)

1.1.1 Ion Pressure

The ion pressure is simply given by the ideal gas law:

Pi = nikT . (8)

We can spend just a little time understanding ni. To compute ni, we must sum over all
species:

ni =
ρ

µimh

, (9)

where µi is the mean particle mass:

1

µi

≈ X +
Y

4
+

1−X − Y

⟨A⟩
, (10)

where X is the fractional abundance of hydrogen, Y of helium, and ⟨A⟩ is the mean atomic
mass of everything else (“metals”). For the Sun, X = 0.707, Y = 0.274, and ⟨A⟩ ≈ 20; this
gives µi = 1.29.

1.1.2 Electron Pressure

The electron pressure can be derived in much the same way. We can again start with the
ideal gas law:

Pe = nekT . (11)

and
ne =

ρ

µemh

. (12)

Because each species contributes a different number of electrons per particle, we have to
again sum over all species. If we assume full ionization, which is a fine assumption in stellar
interiors (but not photospheres):

1

µe

≈ X +
Y

2
(1−X − Y )

〈
Z

A

〉
, (13)

where
〈
Z
A

〉
is the average value for all metals; assuming this value is close to 2,

1

µe

≈ (1/2)(1 +X) (14)
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which yields µe ≈ 1.17 for the Sun.

The total gas pressure is then Pgas = Pi + Pe =
(

1
µi

+ 1
µe

)
kρT/mH . If we substitute

1

µ
=

1

µi

+
1

µe

, (15)

we find µ = 0.61 for the Sun. This tells us that for hydrogen, ion and electron pressure are
equal and that for all heavier elements, electron pressure is higher.

1.1.3 Degeneracy and Relativistic Pressure

The above assumes that electrons are not degenerate and are not relativistic. But, as the
pressure goes up, the Pauli exclusion principle comes into play. Pauli says that no two
fermions can have the same set of quantum numbers. But, Pauli must be understood in
tandem with the Heisenberg Uncertainty Principle:

∆V∆3p ≥ h3 , (16)

where V is the volume and p is the momentum vector. Thus

n(p)dp = 2/∆V = 2/h34πp2dp (17)

for p < p0 , where p0 is the maximum momentum.

We can solve for p0:

ne =

∫ p0

0

ne(p)dp , (18)

which solves to

p0 =

(
3h2ne

8π

)1/3

(19)

Putting it all together:

Pe,deg =
8π

15meh3
p0 =

h2

20me

(
3

π

)2/3
1

m
5/3
e

(
ρ

µe

)5/3

(20)

and finally we have

Pe,deg = K ‘
1

(
ρ

µe

)5/3

, (21)

with K ‘
1 = 1.00× 107m4 kg2/3 s−2.

As v → c, we have to treat things relativistically. We do the same treatment as above, but
with v = c and get

Pe,r−deg =
hc

8

(
3

π

)1/3
1

m
4/3
H

(
ρ

µe

)4/3

(22)
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and finally we have

Pe,deg = K ‘
2

(
ρ

µe

)4/3

, (23)

with K ‘
2 = 1.24× 1010m3 kg−1/3 s−1.

These are also equations of state! So we have three:

P =
ρ

mg

kT (24)

Pe,deg = K ‘
1

(
ρ

µe

)5/3

(25)

Pe,deg = K ‘
2

(
ρ

µe

)4/3

(26)

The big thing to notice is that for degenerate gas there is no temperature dependence.

We need two more pieces of information on the state of our gas: its ionization state and
its electronic configuration. For the former, we’ll use Saha and for the latter we’ll use
Boltzmann.

1.2 Ionization state

The Saha ionization equation relates the ionization state to the temperature and pressure.

For a gas composed of a single atomic species in LTE, only concerning two states (excited
and not as excited) the Saha equation is written:

ni+1ne

ni

≃ 2

(
2πmekT

h2

)3/2
gi+1

gi
exp

[
−Φr

kT

]
, (27)

where ni is the density of atoms in the i-th state of ionization, that is with i electrons re-
moved.
gi is the degeneracy of states for the i-ions; note that this is not the electron degeneracy used
in Boltzmann below!
Φr is the energy required to remove i electrons from a neutral atom, creating an i-level ion
(the “ionization potential”).
ne is the electron density
me is the mass of an electron
T is the temperature of the gas
kB is the Boltzmann constant
h is Planck’s constant .

Hydrogen is particularly simple. The degeneracy of states for the ground state of hydrogen is
4 (proton spin up, electron up; p up e down; p down e up; p down e down). The degeneracy

4



of states for the ionized state is 2 (spin up and down). We therefore have:

nH+ne

nH

≃
(
2πmekT

h2

)3/2

exp

[
−13.6 eV

kBT

]
, (28)

It’s super useful to have the ionization potentials for common elements memorized because
then one can get a rough sense for the ionization state of a gas. We can arrive at a very
rough approximation by considering how tightly bound an electron is. For example, ionizing
the second electron of He takes a lot of energy because the Coulomb interaction is strong.

1.3 Electronic state

We use the Boltzmann equation, the single most important equation in stat. mech. to tell
us the electronic state:

ni

nj

=
gi
gj
e−Eij/k Tex , (29)

where ni is the density in state i, gi is the degeneracy of state i, Eij is the energy difference
between the two states, and Tex is the “excitation temperature.” More on Tex later.

While this equation gives the relative densities between states, we are frequently interested
in the fractional density of a given state compared to all states. In such cases, we need to
use the “partition function,”

Z(Tex) =
∞∑
j

gje
−Ej/k Tex (30)

So that
ni

nT

=
gie

−Ei/k Tex

Z(Tex)
, (31)

where nT is the total population in all levels.

The excitation temperature is not a physical temperature! It is instead the temperature at
which the Boltzmann equation is satisfied. When is Tex = Tk the kinetic temperature? When
collisions are frequent! Assume we have two competing processes: collisions and radiation,
and that the kinetic (collision) temperature Tk and radiation temperature (TR) are different.
If the timescale for collisions is closer than the timescale for photon-particle interactions,
Tex ≃ Tk.

For another example, assume that the population levels are inverted such that the upper
level is overpopulated relative to the lower level, then Tex is negative. This is allowed because
Tex is not a real temperature. These population inversions can result in masing emission.

It is also worth noting that the excitation temperature only corresponds to the transition
between the upper and lower levels. Therefore, each transition can have a different excitation
temperature!
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Radiation temperature, TR, is the the equivalent temperature blackbody that would emit
the same intensity at the frequency of interest. This is also sometimes called the background
temperature, TBG or T0. In the limit of low frequencies where the RJ limit applies, the
brightness and radiation temperatures are the same.

If Tk = TR = Tex = T , the system is in thermodynamic equilibrium (TE). This happens
when the particle energy distribution follow the Boltzmann equation (and ionization states
follow Saha, see below), the particle velocity distributions follow MB, and the radiation field
is a Planck function at temperature TR.

If Tk = Tex ̸= TR, the system is in local thermodynamic equilibrium, LTE. LTE is much easier
to attain and is commonly assumed. This is often good enough when collisions dominate
over radiative processes. “Local” here refers to ∼ one mean free path.

In LTE, the changes in temperature must vary slowly, so that at each point in the object
of interest we can assume TE. That temperature is that of the particles, which follow a
Maxwellian distribution with a single temperature, for all particle species. In other words,
the temperature gradient scale must be small compared to the mean free path of the particles.

1.4 Radiation Pressure

Having done gas pressure in all its forms, we are ready to turn to radiation pressure. We
can write the Planck function as

n(ν)dν − 8πν2

c3
dν

ehν/kT − 1
, (32)

where n(ν)dν is the number of photons with frequency between ν and ν + dν. Using the
pressure integral with v = c and p = hν/c,

Prad = 1/3

∫ ∞

0

c
hν

c
n(ν)dν , (33)

and after inserting the Planck function and doing the integral we find

Prad = 1/3aT 4 , (34)

where a is the radiation constant a = 8π5k4/(15c3h3) = 4σ/c

Finally, we can put things in terms of energy per unit mass u. For non-degenerate, we have

ugas =
3

2

Pgas

ρ
=

3

2

nkT

ρ
=

3

2

kT

mg

. (35)

We arrive at exactly the same for generate! For relativistic, degenerate, we find

ugas = 3
Pgas

ρ
. (36)
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For radiation,

urad =

∫ ∞

0

hνn(ν)dν = at4 = 3
Pradρ

.
(37)

So, regardless of the degeneracy of the gas or even if we are discussing gas or radiation, we
always have u ∝ P/ρ. We will use this fact below.

2 The Adiabatic Exponent

We can often assume that stars are “adiabatic,” meaning within a parcel of gas there is no
heat exchange with the outside environment. This assumption makes our life much easier.
The adiabatic exponent, also known as the heat capacity ratio, tells us the relationship
between pressure and density.

The big advantage of assuming abiabaticity is that we can apply the first law of thermody-
namics:

du+ Pd

(
1

ρ

)
= 0 , (38)

where du is the change in energy and Pd (1/ρ) is the work done.

From the preceding discussion, we can write

u = ϕ
P

ρ
, (39)

where ϕ is a constant. We can compute du:

du = ϕ

[
ρdP − Pdρ

ρ2

]
= ϕ

[
dP

ρ
− Pd

(
1

ρ

)]
(40)

and therefore

(ϕ+ 1)Pd

(
1

ρ

)
+ ϕ

1

ρ
dP = 0 (41)

or
P/dP

=

ϕ

ϕ+ 1

ρ

dρ
, (42)

which is an ordinary linear differential equation and solves to

P = Kaρ
(ϕ+1)/ϕ = Kaρ

γa , (43)

where γa is the adiabatic exponent and Ka is a proportionality constant that depends on
the entropy of the system. Comparing with our earlier results, (for un-ionized atomic gas),
γa = 5/3 for ideal and non-relativistic degenerate gas and γa = 4/3 for relativistic degenerate
gas.

If we have ions, γa changes because ions affect the energy density. We then have an additional
energy term representing the potential energy of ionization

χn+

ρ
=

χn+

[(n0 + n+)mH ]
=

χn+

mH

(44)
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so therefore

u = 3/2
P

ρ
+

χn+

mH

. (45)

As before, we can compute du and substitute into the first law. Doing so, we get an incredibly
ugly expression for γa:

γa(x) =
5 + (5/2 + χ/kT )2x(1− x)

3 + [3/2 + (3/2 + χ/kT )2]x(1− x)
, (46)

where x is the ionization fraction. Note that this does not apply to degenerate gas. We can
see that if x = 0 or x = 1, γa = 5/3 as we found before. If x = 0.5, the function is at a
minimum:

γa(x = 0.5) =
5 + 0.52(5/2 + χ/kT )2

3 + 0.52[3/2 + (3/2 + χ/kT )2]
, (47)

which results in γa = 1.63 for χ/kT = 1 and γa = 1.21 for χ/kT = 10. The upshot is that
gammaa is always near unity and varies between 1 and 2. Despite this, because it is in the
exponent, these small changes can have a large impact.

We can arrive at approximate values for γa without going through all the math. If we assume
energy equipartition, each degree of freedom adds 1/2kT to the energy. We can write the
γ ≃ (f + 2)/f , where f is the number of degrees of freedom. So for monotomic gas, f = 3
(x, y, z) and γa = 5/3. For diatomic gas, f = 5 because there are two rotational degrees of
freedom (it is symmetric under rotation of this third axis), so γa = 7/5.

3 Opacity

Opacity (κ) refers to the degree to which a material allows light to pass through it and is
closely related to optical depth:

τν =

∫
κνρds , (48)

where ρ is the mass density and the integration is over the path length. Opacity is intrinsic
to the material, whereas optical depth is integrated along the path. We can see from the
equation that opacity must have units of area/mass. Note that just like optical depth, there
is a wavelength/frequency dependence to opacity.

We can think of opacity as the analogue of emission. High opacity means that the element
is able to absorb at that frequency. The element therefore must be in the correct electronic
state (if applicable), and the correct ionization state for that particular photon. The more
of an element, the stronger the opacity. Therefore, κν = κν(ρ, T,Xi).

Stellar opacity turns out to be incredibly important, as it is related to the luminosity. Opacity
can remove photons from the medium (absorption) or simply redirect them and remove them
from the line of sight (scattering).

There are five primary sources of opacity:
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1. Bound-Bound, κbb. The photon excites an electron and the electron then relaxes back
to the ground state, releasing photons. These are sharp features, because only certain
photons can cause the transitions. If there are multiple steps between the excited and
ground states, multiple photons can be released, each of less energy than the original.
The net result will be a redenning of the spectrum. So bound-bound has high opacity
only at particular wavelengths, and requires neutrals (and so isn’t important in stellar
interiors).

2. Bound-free, κbf . These are photoionizing interactions. Any photon with energy greater
than the ionization potential of the atom/molecule in question can photoionize it.
Produces continuous opacity above the ionization potential.

3. Free-free absorption, κff . Free electrons near ions can absorb photons over a continuous
range of wavelengths. Important in stellar interiors.

4. Electron (Thompson) scattering, κes. Electrons can also scatter, or change the direction
of, photons. This results in continuum opacity.

5. H− Continuum Opacity, κH− . It may seem strange, but hydrogen can capture an extra
electron, leading to something called H−. H− only forms in relatively low temperatures,
say for F0 stars and later. The ionization potential of H− is just 0.754 eV, which means
that a large number of photons can ionize it. It is a significant source of opacity in
stellar photospheres (but is otherwise unimportant).

Each of these has its own characteristic functional form. Often we can model these functions
as

κ = κ0ρ
aT b , (49)

where κ0 is a constant that depends on the material, and a and b are constants that depend
on the mechanism. One common form is when a = 1 and b = −7/2 - this form is known as
“Kramer’s Opacity.” Let’s take each process in turn:

For bound-bound, we don’t have a functional form for opacity since the opacity depends
strongly on the wavelength of the radiation and the composition of the material.

For bound-free radiation, the opacity is zero up to the ionization potential of a given element,
then spikes and falls off. We can model the portion above the ionization potential:

κbf = κ0
gbf
t
Z(1 +X)ρT−7/2 , (50)

where κbf,0 = 4.32×1025, gbf is the Gaunt factor (approximately unity), and t is the “guillo-
tine factor” that describes the atom’s contribution to the opacity after it has been ionized.
This has a Kramer’s opacity dependence.

For free-free absorption, we have

κff =
κff,0

µe

⟨Z
2

A
⟩ρT−7/2 ≈ 1/2κff,0(1 +X)⟨Z

2

A
⟩ρT−7/2 , (51)
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Figure 1: Computation of the Rosseland mean opacity. The curves are the logarithm of the
density.

where in the approximation we have used the relations from earlier for µe (1/µe is the average
number of free electrons per nucleon), κff,0 = 7.5 × 1018m5kg−2K7/2. Our book lists that
this is accurate to within 20%. This is also a Kramer’s opacity term.

For electron scattering, there is no frequency or temperature dependence, a = b = 0. Thus

κes =
κes,0

µe

≈ 1/2κes,0(1 +X) , (52)

where κes,0 = 0.04m2kg−1. This is the dominant source of opacity in stellar interiors.

For H−, C&O give a function form for 3000K < T < 6000K and 10−7 kg−1m−3 < ρ <
10−2 kg−1m−3:

¯κH− ≈ κH−,0(Z/0.02)ρ
1/2T 9m2kg−1 , (53)

where κH−,0 = 7.9 × 10−34m−2kg−1. This is the dominant source of opacity in stellar
photospheres.

We can define a Rosseland Mean Opacity to attempt to determine an opacity averaged over
all wavelengths that depends only on the temperature:

κ̄ = ¯κbb + κbf + κff + κes + κH− (54)

Because the sources of opacity are complicated, this is not a trivial calculation! One result
is shown in the figure. Our book lists an average value of κ̄ = 0.04m2kg−1.
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We typically see no further into a star (or anything optically thick) than unity optical depth.
A more careful treatment actually shows that the level within a stellar atmosphere from
which most of the photons of wavelength λ escape is at optical depth τλ ≃ 2/3. Indeed, the
condition τλ ≃ 2/3 defines the stellar photosphere – the layer of a star’s atmosphere from
which the light we see originates.

There are two consequences of this realization. First, the condition applies to all viewing
angles; therefore, the distance ds corresponding to the condition τλ = 2/3 will probe further
into the star’s interior at the center of a stellar disk than at its edges. Second, recalling the
definition of optical depth, it is obvious that if the opacity κλ increases at some wavelength,
then ds must be smaller to satisfy the condition τλ = 2/3. Thus, we see further into a star
in its continuum light than at the wavelengths of discrete absorption lines. These two effects
explain a phenomenon known as ‘limb darkening’, first recognised in the Sun, whereby
the light emitted in successive annuli from the centre decreases in intensity and becomes
progressively redder. Sightlines near the limb do not penetrate as deeply into the Sun’s
atmosphere by the time τλ = 2/3 is reached; since the Sun’s temperature decreases outwards
from the center, such sightlines see light from cooler regions of the Sun’s atmosphere.

The opacity determines how energy is transferred through a star. It is therefore related
to the temperature gradient. We will follow the treatment of Eddington, who equated the
momentum of photons passing through a slab to the force of those photons. We can say that
the former term is dI

c
(our book uses H) , where I is the intensity dI = κρIds. Thus the

momentum is κρIdr/c because ds = dr. The latter term is the pressure difference (these are
both per unit area and a force is just pressure/area): P (r)rad − P (r + dr)rad. Thus

κρI

c
= −dPrad

dr
. (55)

We know for Blackbody radiation that P = 1/3aT 4 and

I = −4acT 3

3κρ

dT

dr
. (56)

We know F = I×Area, so

F = −4πr2
4acT 3

3κρ

dT

dr
(57)

and we can invert this to
dT

dr
= − 3κρ

4acT 3

F

4πr2
(58)

or
dT

dm
= − 3κ

4acT 3

F

(4πr2)2
(59)
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