ASTR705 ISM HW #10 – last one! Due Friday, 4/28 in class

- 1) (2 pt each) Suppose that a shock wave propagages at velocity v_s through a fluid with preshock number density n_0 , preshock temperature $T_0 = 0$, and preshock mangetic field $B_0 = 0$. Assume the fluid is monotomic ideal gas of mean particle mass μ . Leave these in terms of variables if quantities are unknown.
 - a) What is the density n_s just behind the shock (postshock gas)?
 - b) What is the temperature T_s just behind the shock (postshock gas)?
 - c) What is the ratio of the thermal pressure $n_s kT_s$ postshock to the preshock "ram pressure" $n_0 \mu v_s^2$?
- 2) (3 pt) For a supernova in the Sedov-Taylor phase, derive a value for A in Equation 39.8:

$$R_s = AE^{1/5}\rho_0^{-1/5}t^{2/5} \,. \tag{1}$$

Assume that half of the total energy is ordered kinetic energy $E \approx 1/2Mv_s^2$, where M is the swept-up mass. Is your value close to the exact one in the textbook?