ASTR368 HW#6 March 8, 2024 Due March 22, 2024 2 points each part unless otherwise stated

1) To illustrate the cosmological principle, draw a sample of space that is isotropic (same in all directions), but not homogeneous (the same in all locations). Do the same for a sample that is homogeneous, but not isotropic.

2) What is the implication for the fate of the Universe if the density parameter value $\Omega < 1$?

3) Lifetime of the Universe.

a) Take

$$H^{2}[1-\Omega]R^{2} = -kc^{2}.$$
 (1)

What is this expression in the present day?

b) Plug in for H and Ω to get an expression of dR/dt, ρ_0 , R, and k. Remember that for this Universe with only pressureless dust $R^3\rho = \rho_0$.

c) Solve your answer for a) to derive R as a function of time t by assuming our flat pressureless dust Universe with k = 0, $\rho = \rho_c$, and $\Omega = 1$. Your answer will have $\rho_{c,0}$ in it.

d) Substitute in this expression

$$\rho_{c,0} = \frac{3H_0^2}{8\pi G}$$
(2)

and

$$t_H \equiv \frac{1}{H_0} \tag{3}$$

to get an expression for R as a function of t that only depends on t_H .

e) What is the age of this Universe in terms of t_H ?

4) Let's again take:

$$H^{2}[1-\Omega]R^{2} = -kc^{2} \tag{4}$$

If we also have a radiation energy density Ω_{rad} , where would that go in the equation? What effect would the addition of Ω_{rad} have on the evolution of the Universe?