
ASTR 367

Units and fundamental quantities in astronomy (Chap-

ter 1)

Astronomy has a bunch of units that are strange. The goal of these unusual units is to turn
values that otherwise would be very large or very small into numbers that are easier to use
and remember. Some units, however, are difficult to get used to, like the choice of the “CGS”
system in place of SI.

CGS - let’s get it over with

The CGS system is kind of stupid. It stands for “centimeter, gram, second.” This would be
fine, but using cm breaks the nice metric rule where quantities are related by multiples of
10±3x.

As far as I know, the use of cm was adopted by astronomers because volumes in cm−3 tend
to be reasonable values near unity. That’s the only reason I know of.

We’ll use both CGS and SI in this course, for maximum confusion. Below are some common
conversions (from Wikipedia):

Quantity CGS Unit Unit definition Equivalent in SI units
length cm 1/100 of meter = 10−2 m
mass g 1/1000 of kilogram = 10−3 kg
time s 1 second = 1 s
velocity cm/s cm/s = 10−2 m/s
acceleration gal cm/s2 = 10−2 m/s2

force dyn g cm/s2 = 10−5 N
energy erg g cm2/s2 = 10−7 J
power erg/s g cm2/s3 = 10−7 W
pressure Ba g/(cm s2) = 10−1 Pa

Your book as a more extensive list in Appendix B.

Astronomy-Specific Units

Astronomers like to work in units that make the numbers easier to deal with. Common
values are for the Sun.

Mass: M⊙ = 1.9891× 1030 kg = 1.9891× 1033 g

Radius: R⊙ = 6.955× 108m = 6.955× 1010 cm

Luminosity: L⊙ = 3.84× 1026W = 3.84× 1033 erg/s [Note: this is “bolometric” luminosity
over all wavelengths]
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Distances can get pretty big too, so we’ll use the unit of “parsec” (pc). Sometimes astro-
nomical units (AU) are used.

AU = 1.496× 1011m = 1.496× 1013 cm Useful within the Solar system.

pc = 3.08× 1016m = 3.08× 1018 cm Useful for nearest stars

kpc = 103 pc = 3.08× 1019m = 3.08× 1021 cm Useful for things in the Milky Way and the
Local Group.

Mpc = 106 pc = 3.08× 1022m = 3.08× 1025 cm Useful for external galaxies.

Angles

Everything in astronomy is angles! We often don’t know the distance to an object, so instead
we measure how large it is on the sky, the angular size. We measure such sizes in degrees,
then 1/60 of a degree “minutes,” then 1/60 of a minute, “seconds.” Because everything
is measured on the sky, which appears to be a sphere, we instead use “arcminutes” and
“arcseconds.” We denote these with ′, and ′′, respectively.

A useful conversion is that there are 206265′′ per radian.

Solid Angle

Specific intensity above included solid angles, which many students haven’t yet heard of. A
solid angle, measured in dimensionless steradians (sr), is simply a two-dimensional angle.
Think of it as a cone spreading out from the center of a sphere to its edge. A solid angle is
the area of a unit sphere such that there are 4π sr total on a sphere. The obvious application
is the sky. Objects that appear larger on the sky have a larger solid angle.

The mathematical definition is
dΩ = sin θdθdϕ (1)

or

Ω =

∫
S

∫
sin θdθdϕ , (2)

where Ω is the solid angle, θ and ϕ are angles in spherical coordinates and the integration is
over surface S.

For a spherical solid angle, θ = ϕ. For spherical solid angles with small θ we can approximate
the solid angle with:

Ω ≃ πθ2 , (3)

with θ in radians of course. Notice that this is just the area of a circle of radius θ. The true
solid angle will be slightly smaller than this for a given value of θ, although this is almost
always appropriate for astronomical measurements. The true formula is

Ω = 2π(1− cos θ) (4)
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Intensity

The specific intensity of radiation the most basic observable quantity. It is essentially the
surface brightness, and is appropriate for all resolved objects. By “resolved” I mean that we
can in principle sense differences across the source. Stars (except for the Sun) are with very
few exceptions unresolved; they are just single points of light.

Intensity is independent of distance. Thus, the camera exposure time and aperture
setting for an exposure of the Sun would be the same, regardless of whether the photograph
was taken close to the Sun (from near Venus, for example) or far away from the Sun (from
near Mars, for example), so long as the Sun is resolved in the photograph. This seems terribly
wrong at first, but can easily be proven.

Intensity is the same at the source and at the detector. Thus you can think of
brightness in terms of energy flowing out of the source or as energy flowing into the detector.

Intensity is related to the energy dE passing through an infinitesimally small area dA by:

dE = Iν dA cos θ dΩ dν dt. (5)

Here, “specific” refers to the fact that it is at a particular wavelength. We can of course
rewrite this as:

Iν =
dE

dA cos θdΩdνdt
. (6)

In this expression, θ is measured normal to the surface dA and dΩ is the solid angle. The
dimensions of Iν are then erg cm−2Hz−1 s−1 sr−1. In the raio, “sr” is often replaced with
“beam.”

Notice that we wrote the specific intensity in frequency units. Iν has a dependence on dν,
and dν ̸= dλ. Instead,

dν = −(c/λ2)dλ. (7)

So combining with the above equations, we see that

νIν = λIλ. (8)

To get the intensity or integrated intensity we would of course integrate over frequency or
wavelength so that

I =

∫ ∞

0

Iνdν =

∫ ∞

0

Iλdλ. (9)

Flux

While intensity is a natural unit for extended sources, we are frequently more interested in
the quantity of flux integrated over solid angle:

Fν =

∫
Iν cos θdΩ (10)
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or

Fν =

∫ 2π

0

∫ π

0

Iν cos θ sin θdθdϕ . (11)

This is technically the flux density, where “density” refers to the fact that it is at a particular
wavelength or frequency. Unfortunately, flux and flux density are often used incorrectly. The
units of flux density are therefore erg cm−2 s−1Hz−1. Similar to the intensity, we can integrate
over frequency or wavelength to get the flux or integrated flux.

In practice, when do we use spectral brightness and when do we use flux density to describe
a source? If a source is unresolved, meaning that it is much smaller in angular size than the
point-source response of the eye or telescope observing it, its flux density can be measured
but its spectral brightness cannot. If a source is much larger than the point-source response,
its spectral brightness at any position on the source can be measured directly, but its flux
density must be calculated by integrating the observed spectral brightnesses over the source
solid angle.

Luminosity

Intensity and flux are observable quantities, and not physical quantities. We are often more
interested in luminosity, which is intrinsic to the source. The observed luminosity is

L = 4πd2F , (12)

where d is the distance to the source.

If the object is a blackbody (and spherical), we can use Stephan-Boltzmann:

L = 4πR2σT 4 , (13)

(more on this later).

Distance

Distances to astronomical objects are a whole course of study in themselves! One such
account can be found in “Measuring the Universe” by Webb (Springer/Praxis).

In any case, the fundamentals that we need to know are that much of what we know about
distances are based on the parallax technique applied to the nearby stars. Parallax measures
the relative shift in position of a foreground star, relative to background stars, as the Earth
revolves around the Sun (or, alternatively, as a satellite revolves around the earth).

d =
1AU

tan p
≃ 1

p
AU , (14)

where d is the distance and p is the measured parallax. This is so useful, that we usually use
“arcseconds,” 1/3600 of a degree, to measure p, and then the distance d can be measured in
pc:

d =
1

p
pc . (15)
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Figure 1: Parallax

(Apparent) Magnitude

Magnitudes are the units of brightness, typically used in the optical and near-infrared
regimes. They are always measured in a particular bandpass, for example the Johnson
V-band. This allows us to compute “colors” by looking at magnitude differences. Colors are
the crudest way of determining the shape of the spectral energy distribution.

Magnitudes are based on Hipparchus’s classification of stars in the northern sky. Hipparchus
classified stars with values of magnitudes from 1 to 6, 1 magnitude being the brightest.
Because it was defined by eye, and the eye does not have a linear response, a first magnitude
star is not twice as bright as a second magnitude star. Instead, astronomers later found that
Hipparchus’ system is roughly logarithmic, and 6th magnitude stars are roughly 100 times
fainter than 1st magnitude stars. The magnitude system has two peculiarities:
(1) It is defined backwards, and
(2) It is logarithmic.
So it is basically the ideal system to use.

Five equal steps in log-space (1st to 6th magnitude) result in factors of 2.512 in linear space
(100∆m/5 = 2.512∆m). Therefore, a 1st magnitude star is 2.512 times brighter than a second
magnitude star, and a 4th magnitude star is 2.5123 = 15.8 times fainter than a 1st magnitude
star. Another way of thinking about this is:

m1 −m0 = −2.5 log10(F1/F0) (16)

or
F1

F0

= 100.4(m0−m1) , (17)

where F1 and F0 are the fluxes and m0 and m1 are the magnitudes of stars “0” and “1”.

The magnitude of a star is usually measured at a particular wavelength, through a photo-
metric filter. The most common filters used are the Johnson U,V,B,R,I, but there are now
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a large number of filters available. Magnitudes found using these filters are often denoted
with the filter names themselves, e.g., B for mB.

How can we actually use this system? We need a reference star of known flux (F0) and
magnitude (m0). Any star will do, but two commonly used ones are Vega and the Sun. Our
book lists magnitudes of the Sun in common filters, in Appendix A.

If we wish to convert from the magnitude measured in one filter to that over all wavelengths
(the “bolometric” magnitude), we need a “bolometric correction,” BC.

mbol = mV +BC (18)

For the Sun, BC⊙ = −0.08.

Many things in space attenuate (absorb/scatter) star light, and this attenuation is often
measured in magnitudes. For example, each kpc in the Galaxy produces about a magnitude
of visual extinction. Star formation regions can have visual extinctions of 100, so a star would
have 2.5100 = 1040 times less light than it would if extinction were not present. Extinction
generally decreases with increasing wavelength, so it is less in the infrared and essentially
absent in the radio.

Absolute Magnitudes

We can also use absolute magnitudes to denote a quantity similar to luminosity, i.e., some-
thing intrinsic to the source. In this case, instead of flux, we simply replace with luminosity.

M1 −M0 = −2.5 log10(L1/L0) (19)

or
L1

L0

= 100.4(M0−M1) , (20)

Note, capital M refers to absolute magnitude, lower case is apparent.

But how exactly is the absolute magnitude defined? It is the apparent magnitude of a star
at a distance of 10 pc of course! So

m−M = 5 log d− 5 , (21)

where d is in pc. If we plug 10 in for d, we find

m−M = 5× 1− 5 = 0 , (22)

so m = M .

The quantity µ = m−M is known as the “distance modulus,” and uses the symbol µ.

Astronomical filters

We cannot observe all the light from an object, that’s just not how detectors (including your
eyes) work. Instead, we use filters that have a certain response shape, a certain bandpass,
and a certain central frequency.
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Figure 2: Common astronomical filters.
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Colors

Differences in magnitudes are (confusingly) called colors. A color gives the relative intensity
between two wavelengths, similar to a slope. We’ll chat about colors more later.
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In-Class questions
1) Tycho Brahe looked for stellar parallax, but couldn’t detect it due to the precision of his
instruments. If the nearest star, Proxima Certauri, is 1.3 pc from the Sun, what can you say
about Tycho’s angular resolution?
2) By what factor is the flux of a 5th magnitude star less than that of a 3rd magnitude star?
3) If the absolute V-band magnitude of the Sun is +4.8, what is its apparent V-band mag-
nitude?
4) The Sun has an absolute V-band magnitude of +4.8 and an absolute B-band magnitude
of +5.5. What is its flux ratio at the two wavelength filters?
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