
Stellar
Gas Physics

Stars are gas! Specifically, they are ionized gas (except in their photospheres,
which do contain some neutrals and not-completely-ionized species). We need
to understand the properties of gas, the properties of radiation, and the inter-
action between gas and radiation.

The Equation of State

An “Equation of State” is a relation that relates temperature, pressure, and
density - so-called “state variables:” P = P(ρ, T, X⃗). The most famous equation
of state of course is the ideal gas law,

P = nkT =
ρ

μmH
kT , (1)

where μ is the mean particle mass in units of mH. It is vital that we understand
how these state variables are related to each other.

We assume throughout this discussion that the gas is ideal, i.e. that thermal
energy dominates over Coulomb energy. Is this a good assumption? Let’s see!
The typical Coulomb energy per particle is:

εC ≈
1

4πε0

Z2e2

d
, (2)

where Ze is the charge per particle and d is the distance between particles.
We can estimate d assuming a constant density:

d =
�

μmH

ρ̄

�1/3

=
�

4πμmH

3M

�1/3

R , (3)

where the mean particle mass is μmH (our book uses AmH) and the stellar
radius and mass are R and M. Evaluating εC/kT, the ratio of Coulomb to kinetic
energy per particle, we find ∼ 0.01. The ratio rises as Z increases, but doesn’t
approach unity even for pure iron. As M decreases, however, the ratio does go
up substantially. It only approaches unity for M ≲ M−3⊙ , which is why we must
take Coulomb interactions into account for planets, but not stars.

Pressure

To derive an equation of state, we need a general relation for pressure. Free
particles exert a pressure given by the “pressure integral:”

P = 1/3
∫

 pn(p)dp , (4)
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where  is the particle velocity, p is its momentum and n(p)dp is the number of
particles per unit volume with momentum in the range p to p+dp. This famous
equation is derived in the book (I won’t repeat it here). It is a general relation
that we can use for all computations of pressure (gas/radiation/degenerate
gas).

The total pressure within a star can be derived by evaluating the pressure
integral for each gas species and adding the radiation pressure exerted by
photons. Treating ions and electrons separately:

P = P + Pe + Prd = Pgs + Prd . (5)

We often define β as the fractional gas pressure:

Pgs = βP (6)

Prd = (1 − β)P (7)

Ion Pressure

The ion pressure is simply given by the ideal gas law:

P = nkT . (8)

We can spend just a little time understanding n. To compute n, we must sum
over all species:

n =
ρ

μmh
, (9)

and:
1

μ
≈ X +

Y

4
+
1 − X − Y

〈A〉
, (10)

where X is the fractional abundance of hydrogen, Y of helium, and 〈A〉 is the
mean atomic mass of everything else (“metals”). For the Sun, X = 0.707,
Y = 0.274, and 〈A〉 ≈ 20; this gives μ = 1.29.

Electron Pressure

The electron pressure can be derived in much the same way. We can again
start with the ideal gas law:

Pe = nekT . (11)

and

ne =
ρ

μemh
. (12)
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Because each species contributes a different number of electrons per particle,
we have to again sum over all species. If we assume full ionization, which is a
fine assumption in stellar interiors (but not photospheres):

1

μe
≈ X +

Y

2
(1 − X − Y)
�

Z

A

�

, (13)

where
¬

Z
A

¶

is the average value for all metals; assuming this value is close to
2,

1

μe
≈ (1/2)(1 + X) (14)

which yields μe ≈ 1.17 for the Sun.

The total gas pressure is then Pgs = P+Pe =
�

1
μ
+ 1

μe

�

kρT/mH. If we substitute

1

μ
=

1

μ
+

1

μe
, (15)

we find μ = 0.61 for the Sun. This tells us that for hydrogen, ion and elec-
tron pressure are equal and that for all heavier elements, electron pressure is
higher.

Degeneracy and Relativistic Pressure

The above assumes that electrons are not degenerate and are not relativistic.
But, as the pressure goes up, the Pauli exclusion principle comes into play.
Pauli says that no two fermions can have the same set of quantum numbers.
But, Pauli must be understood in tandem with the Heisenberg Uncertainty Prin-
ciple:

ΔVΔ3p ≥ h3 , (16)

where V is the volume and p is the momentum vector. Thus

n(p)dp = 2/ΔV = 2/h34πp2dp (17)

for p < p0 , where p0 is the maximum momentum.

We can solve for p0:

ne =
∫ p0

0
ne(p)dp , (18)

which solves to

p0 =

�

3h2ne

8π

�1/3

(19)
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Putting it all together:

Pe,deg =
8π

15meh3
p0 =

h2

20me

�

3

π

�2/3 1

m5/3
e

�

ρ

μe

�5/3

(20)

and finally we have

Pe,deg = K ‘
1

�

ρ

μe

�5/3

, (21)

with K ‘
1 = 1.00 × 107m4 kg2/3 s−2.

As → c, we have to treat things relativistically. We do the same treatment as
above, but with  = c and get

Pe,r−deg =
hc

8

�

3

π

�1/3 1

m4/3
H

�

ρ

μe

�4/3

(22)

and finally we have

Pe,deg = K ‘
2

�

ρ

μe

�4/3

, (23)

with K ‘
2 = 1.24 × 1010m3 kg−1/3 s−1.

These are also equations of state! So we have three:

P =
ρ

mg
kT (24)

Pe,deg = K ‘
1

�

ρ

μe

�5/3

(25)

Pe,deg = K ‘
2

�

ρ

μe

�4/3

(26)

The big thing to notice is that for degenerate gas there is no temperature
dependence.

We need two more pieces of information on the state of our gas: its ionization
state and its electronic configuration. For the former, we’ll use Saha and for
the latter we’ll use Boltzmann.

Ionization state

The Saha ionization equation relates the ionization state to the temperature
and pressure.
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For a gas composed of a single atomic species in LTE, only concerning two
states (excited and not as excited) the Saha equation is written:

n+1ne

n
≃ 2
�

2πmekT

h2

�3/2 g+1

g
exp
�

−
r

kT

�

, (27)

where n is the density of atoms in the -th state of ionization, that is with 
electrons removed.
g is the degeneracy of states for the i-ions; note that this is not the electron
degeneracy used in Boltzmann below!
r is the energy required to remove  electrons from a neutral atom, creating
an -level ion (the “ionization potential”).
ne is the electron density
me is the mass of an electron
T is the temperature of the gas
kB is the Boltzmann constant
h is Planck’s constant .

Hydrogen is particularly simple. The degeneracy of states for the ground state
of hydrogen is 4 (proton spin up, electron up; p up e down; p down e up; p
down e down). The degeneracy of states for the ionized state is 2 (spin up and
down). We therefore have:

nH+ne

nH
≃
�

2πmekT

h2

�3/2

exp
�

−
13.6eV

kBT

�

, (28)

It’s super useful to have the ionization potentials for common elements mem-
orized because then one can get a rough sense for the ionization state of a
gas. We can arrive at a very rough approximation by considering how tightly
bound an electron is. For example, ionizing the second electron of He takes a
lot of energy because the Coulomb interaction is strong.

Electronic state

We use the Boltzmann equation, the single most important equation in stat.
mech. to tell us the electronic state:

n

nj
=
g

gj
e−Eij/k Tex , (29)

where n is the density in state , g is the degeneracy of state , Ej is the energy
difference between the two states, and Tex is the “excitation temperature.”
More on Tex later.
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While this equation gives the relative densities between states, we are fre-
quently interested in the fractional density of a given state compared to all
states. In such cases, we need to use the “partition function,”

Z(Tex) =
∞
∑

j

gje−Ej/k Tex (30)

So that
n

nT
=
ge−Ei/k Tex

Z(Tex)
, (31)

where nT is the total population in all levels.

The excitation temperature is not a physical temperature! It is instead the
temperature at which the Boltzmann equation is satisfied. When is Tex = Tk
the kinetic temperature? When collisions are frequent! Assume we have two
competing processes: collisions and radiation, and that the kinetic (collision)
temperature Tk and radiation temperature (TR) are different. If the timescale
for collisions is closer than the timescale for photon-particle interactions, Tex ≃
Tk.

For another example, assume that the population levels are inverted such that
the upper level is overpopulated relative to the lower level, then Tex is nega-
tive. This is allowed because Tex is not a real temperature. These population
inversions can result in masing emission.

It is also worth noting that the excitation temperature only corresponds to the
transition between the upper and lower levels. Therefore, each transition can
have a different excitation temperature!

Radiation temperature, TR, is the the equivalent temperature blackbody that
would emit the same intensity at the frequency of interest. This is also some-
times called the background temperature, TBG or T0. In the limit of low fre-
quencies where the RJ limit applies, the brightness and radiation temperatures
are the same.

If Tk = TR = Tex = T, the system is in thermodynamic equilibrium (TE). This
happens when the particle energy distribution follow the Boltzmann equation
(and ionization states follow Saha, see below), the particle velocity distribu-
tions follow MB, and the radiation field is a Planck function at temperature TR.

If Tk = Tex ̸= TR, the system is in local thermodynamic equilibrium, LTE. LTE is
much easier to attain and is commonly assumed. This is often good enough
when collisions dominate over radiative processes. “Local” here refers to ∼
one mean free path.

In LTE, the changes in temperature must vary slowly, so that at each point
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in the object of interest we can assume TE. That temperature is that of the
particles, which follow a Maxwellian distribution with a single temperature, for
all particle species. In other words, the temperature gradient scale must be
small compared to the mean free path of the particles.

Radiation Pressure

Having done gas pressure in all its forms, we are ready to turn to radiation
pressure. We can write the Planck function as

n(ν)dν =
8πν2

c3
dν

ehν/kT − 1
, (32)

where n(ν)dν is the number of photons with frequency between ν and ν+ dν.
Using the pressure integral with  = c and p = hν/c,

Prd = 1/3
∫ ∞

0
c
hν

c
n(ν)dν , (33)

and after inserting the Planck function and doing the integral we find

Prd = 1/3T4 , (34)

where  is the radiation constant  = 8π5k4/(15c3h3) = 4σ/c

Finally, we can put things in terms of energy per unit mass . For non-degenerate,
we have

gs =
3

2

Pgs

ρ
=
3

2

nkT

ρ
=
3

2

kT

mg
. (35)

We arrive at exactly the same for degenerate! For relativistic degenerate, we
find

gs = 3
Pgs

ρ
. (36)

For radiation,

rd =
∫ ∞

0
hνn(ν)dν = t4 = 3

Prd

ρ
. (37)

So, regardless of the degeneracy of the gas or even if we are discussing gas or
radiation, we always have  ∝ P/ρ. We will use this fact below.

The Adiabatic Exponent

We can often assume that stars are “adiabatic,” meaning within a parcel of
gas there is no heat exchange with the outside environment. This assumption
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makes our life much easier. The adiabatic exponent, also known as the heat
capacity ratio, tells us the relationship between pressure and density.

The big advantage of assuming abiabaticity is that we can apply the first law
of thermodynamics:

d + Pd
�

1

ρ

�

= 0 , (38)

where d is the change in energy and Pd (1/ρ) is the work done.

From the preceding discussion, we can write

 = ϕ
P

ρ
, (39)

where ϕ is a constant. We can compute d:

d = ϕ
�

ρdP − Pdρ

ρ2

�

= ϕ
�

dP

ρ
− Pd
�

1

ρ

��

(40)

and therefore

(ϕ + 1)Pd
�

1

ρ

�

+ ϕ
1

ρ
dP = 0 (41)

or
P

dP
=

ϕ

ϕ + 1

ρ

dρ
, (42)

which is an ordinary linear differential equation and solves to

P = Kρ(ϕ+1)/ϕ = Kργ , (43)

where γ is the adiabatic exponent and K is a proportionality constant that
depends on the entropy of the system. Comparing with our earlier results, (for
un-ionized atomic gas), γ = 5/3 for ideal and non-relativistic degenerate gas
and γ = 4/3 for relativistic degenerate gas.

If we have ions, γ changes because ions affect the energy density. We then
have an additional energy term representing the potential energy of ionization

χn+

ρ
=

χn+

[(n0 + n+)mH]
=
χn+

mH
(44)

so therefore

 = 3/2
P

ρ
+
χn+

mH
. (45)

As before, we can compute d and substitute into the first law. Doing so, we
get an incredibly ugly expression for γ:

γ() =
5 + (5/2 + χ/kT)2(1 − )

3 + [3/2 + (3/2 + χ/kT)2](1 − )
, (46)
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where  is the ionization fraction. Note that this does not apply to degenerate
gas. We can see that if  = 0 or  = 1, γ = 5/3 as we found before. If  = 0.5,
the function is at a minimum:

γ( = 0.5) =
5 + 0.52(5/2 + χ/kT)2

3 + 0.52[3/2 + (3/2 + χ/kT)2]
, (47)

which results in γ = 1.63 for χ/kT = 1 and γ = 1.21 for χ/kT = 10. The
upshot is that γ is always near unity and varies between 1 and 2. Despite this,
because it is in the exponent, these small changes can have a large impact.

We can arrive at approximate values for γ without going through all the math.
If we assume energy equipartition, each degree of freedom adds 1/2kT to the
energy. We can write the γ ≃ (ƒ + 2)/ ƒ , where ƒ is the number of degrees of
freedom. So for monotomic gas, ƒ = 3 (, y, z) and γ = 5/3. For diatomic gas,
ƒ = 5 because there are two rotational degrees of freedom (it is symmetric
under rotation of this third axis), so γ = 7/5.

Opacity

Opacity (κ) refers to the degree to which a material allows light to pass through
it and is closely related to optical depth (which we introduced before, and
which we’ll cover later):

τν =
∫

κνρds , (48)

where ρ is the mass density and the integration is over the path length. Opac-
ity is intrinsic to the material, whereas optical depth is integrated along the
path. We can see from the equation that opacity must have units of area/mass.
Note that just like optical depth, there is a wavelength/frequency dependence
to opacity.

We can think of opacity as the analogue of emission. High opacity means that
the element is able to absorb at that frequency. The element therefore must
be in the correct electronic state (if applicable), and the correct ionization state
for that particular photon. The more of an element, the stronger the opacity.
Therefore, κν = κν(ρ, T, X).

Stellar opacity turns out to be incredibly important, as it is related to the lumi-
nosity. Opacity can remove photons from the medium (absorption) or simply
redirect them and remove them from the line of sight (scattering).

There are five primary sources of opacity:

1. Bound-Bound, κbb. The photon excites an electron and the electron then
relaxes back to the ground state, releasing photons. These are sharp fea-
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tures, because only certain photons can cause the transitions. If there are
multiple steps between the excited and ground states, multiple photons
can be released, each of less energy than the original. The net result will
be a redenning of the spectrum. So bound-bound has high opacity only
at particular wavelengths, and requires neutrals (and so isn’t important in
stellar interiors).

2. Bound-free, κbf. These are photoionizing interactions. Any photon with
energy greater than the ionization potential of the atom/molecule in ques-
tion can photoionize it. Produces continuous opacity above the ionization
potential.

3. Free-free absorption, κff. Free electrons near ions can absorb photons
over a continuous range of wavelengths. Important in stellar interiors.

4. Electron (Thompson) scattering, κes. Electrons can also scatter, or change
the direction of, photons. This results in continuum opacity.

5. H− Continuum Opacity, κH− . It may seem strange, but hydrogen can cap-
ture an extra electron, leading to something called H−. H− only forms in
relatively low temperatures, say for F0 stars and later. The ionization po-
tential of H− is just 0.754 eV, which means that a large number of photons
can ionize it. It is a significant source of opacity in stellar photospheres
(but is otherwise unimportant).

Each of these has its own characteristic functional form. Often we can model
these functions as

κ = κ0ρTb , (49)

where κ0 is a constant that depends on the material, and  and b are constants
that depend on the mechanism. One common form is when  = 1 and b = −7/2
- this form is known as “Kramer’s Opacity.” Let’s take each process in turn:

For bound-bound, we don’t have a functional form for opacity since the opacity
depends strongly on the wavelength of the radiation and the composition of
the material.

For bound-free radiation, the opacity is zero up to the ionization potential of a
given element, then spikes and falls off. We can model the portion above the
ionization potential:

κbƒ = κ0
gbƒ

t
Z(1 + X)ρT−7/2 , (50)

where κbƒ ,0 = 4.32 × 1025, gbƒ is the Gaunt factor (approximately unity), and t
is the “guillotine factor” that describes the atom’s contribution to the opacity
after it has been ionized. This has a Kramer’s opacity dependence.
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For free-free absorption, we have

κƒ ƒ =
κƒ ƒ ,0

μe

®

Z2

A

¸

ρT−7/2 ≈ 1/2κƒ ƒ ,0(1 + X)
®

Z2

A

¸

ρT−7/2 , (51)

where in the approximation we have used the relations from earlier for μe
(1/μe is the average number of free electrons per nucleon), κƒ ƒ ,0 = 7.5 ×
1018m5kg−2K7/2. Our book lists that this is accurate to within 20%. This is
also a Kramer’s opacity term.

For electron scattering, there is no frequency or temperature dependence,  =
b = 0. Thus

κes =
κes,0

μe
≈ 1/2κes,0(1 + X) , (52)

where κes,0 = 0.04m2kg−1. This is the dominant source of opacity in stellar
interiors.

For H−, C&O give a function form for 3000K < T < 6000K and 10−7 kg−1m−3 <
ρ < 10−2 kg−1m−3:

¯κH− ≈ κH− ,0(Z/0.02)ρ1/2T9m2kg−1 , (53)

where κH− ,0 = 7.9 × 10−34m−2kg−1. This is the dominant source of opacity in
stellar photospheres.

We can define a Rosseland Mean Opacity to attempt to determine an opacity
averaged over all wavelengths that depends only on the temperature:

κ̄ = ¯κbb + κbf + κff + κes + κH− (54)

Because the sources of opacity are complicated, this is not a trivial calculation!
One result is shown in the figure. Our book lists an average value of κ̄ =
0.04m2kg−1.

We typically see no further into a star (or anything optically thick) than unity
optical depth. A more careful treatment actually shows that the level within a
stellar atmosphere from which most of the photons of wavelength λ escape is
at optical depth τλ ≃ 2/3. Indeed, the condition τλ ≃ 2/3 defines the stellar
photosphere – the layer of a star’s atmosphere from which the light we see
originates.

There are two consequences of this realization. First, the condition applies to
all viewing angles; therefore, the distance ds corresponding to the condition
τλ = 2/3 will probe further into the star’s interior at the center of a stellar
disk than at its edges. Second, recalling the definition of optical depth, it is
obvious that if the opacity κλ increases at some wavelength, then ds must be
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Figure 1: Computation of the Rosseland mean opacity. The curves are the
logarithm of the density.

smaller to satisfy the condition τλ = 2/3. Thus, we see further into a star in
its continuum light than at the wavelengths of discrete absorption lines. These
two effects explain a phenomenon known as ‘limb darkening’, first recognised
in the Sun, whereby the light emitted in successive annuli from the centre de-
creases in intensity and becomes progressively redder. Sightlines near the limb
do not penetrate as deeply into the Sun’s atmosphere by the time τλ = 2/3 is
reached; since the Sun’s temperature decreases outwards from the center,
such sightlines see light from cooler regions of the Sun’s atmosphere.

The opacity determines how energy is transferred through a star. It is therefore
related to the temperature gradient. We will follow the treatment of Eddington,
who equated the momentum of photons passing through a slab to the force of
those photons. We can say that the former term is d

c (our book uses H) , where
 is the intensity d = κρds. Thus the momentum is κρdr/c because ds = dr.
The latter term is the pressure difference (these are both per unit area and a
force is just pressure/area): P(r)rd − P(r + dr)rd. Thus

κρ

c
= −

dPrd

dr
. (55)

We know for Blackbody radiation that P = 1/3T4 and

 = −
4cT3

3κρ

dT

dr
. (56)
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We know F = ×Area, so

F = −4πr2
4cT3

3κρ

dT

dr
(57)

and we can invert this to
dT

dr
= −

3κρ

4cT3
F

4πr2
(58)

or
dT

dm
= −

3κ

4cT3
F

(4πr2)2
(59)
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