
ASTR469 Lecture 13: Statistics and Fitting

1 The Reason for Astro-statistics
You now have the theoretical background to plan observations and understand the data.
After you get your data, you can do actual science! But to do that, we often need to use
some basic statistical tools for the analysis and interpretation of our data.

Example: Here is a simple spectral line observation.

Information you might want to know about this line:

• What’s the peak frequency and width of this spectral line?

• What’s the S/N of this detection?

• What is the shape/slope of the continuum emission?

• What are the measurement errors in the above derived quantities?

• (More complex question) Is this line made up of distinct, contributing gas clouds with
slightly different velocity distributions, or does it seem to come from only one cloud?

These are all fairly basic things to know, and certainly you could do some of them in a
loose way by estimating from the plot, as we did in the homework. But we are scientists,
and need to quantify measurements a bit more precisely; we also require the study of un-
certainties to determine the reliability of results. There is uncertainty associated with all
measurements due to uncertainties inherent in the data themselves (due to weather, instru-
mentation, sky background, etc.). It is absolutely necessary to understand and accurately
depict your uncertainties when presenting your data.

This is not just true for fitting a spectral line; you might want to fit a line to a scatter
plot, estimate the uncertainty in a single photometric measurement, or any number of other
things. So let’s discuss a few very common methods in astronomical data analysis and a bit
of background theory.
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Figure 1: A Gaussian distribution

2 Very Basic Statistics
Let’s say we are trying to figure out the gravitaional force on a bowling ball. We of course
know a absolutely, so we are measuring m and thereby determining F . We have measured
m 100 times and plotted a histogram, and it looks like a Gaussian distribution. This is the
“normal distribution” or “bell curve” that we saw in the photometry lecture. The general
form is:

f(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (1)

where µ is the mean of the distribution (and also its mode), σ is the standard deviation (we
saw σ before when discussing S/N), and x is the measured values (here, the value in each
histogram bin).

The values in front of the exponential sets the amplitude of the distribution’s peak, which
happens when x = µ. The form above is normalized to 1 (area under the curve is 1). For
our example with Newton’s Second Law, f = F and x = m.

2.1 Mean, Standard Deviation, Variance, and RMS

As we saw in the photometry lecture, the standard deviation σ encompasses 68% of the
measured values in a Gaussian curve. This is what we usually quote as the measurement error
(assuming that the measurement uncertainty is Gaussian-distributed, which is usually true
in astronomy—recall we previously asserted in the photometry lecture that the Poissonian
distribution is close to Gaussian with the number of counts is high). Larger values of σ result
in broader distributions - it is more likely to measure a value far from the mean.

The mean is just the average of all the values:

µ = x̄ =
1

N

N∑
i=1

xi (2)

In statistical analysis one often also uses the variance of a list of N measurements, which is
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the square of the standard deviation and given by:

σ2 =
1

N

N∑
i=1

(xi − x̄)2 (3)

There is one other quantity often quoted, which is the “root mean squared.” This is computed
as:

RMS =

√√√√ 1

N

N∑
i=1

x2i (4)

As you can see by looking at the last two equations, RMS = σ when the mean of the data is
zero, or x̄ = 0 (that is, the root-mean-square will equal the standard deviation if your data
is completely noise-like, and contains no “signal”).

2.2 Error propagation

Now assume we have some function f(x, y, z, ...) and are separately measuring multiple
parameters (x, y, z...) within this function. We might ask ourselves: What is the error on f
based on the measurement errors on the separate parameters?

We can Taylor expand the function if the uncertainties are small:

f − f̄ ≈ ∂f

∂x
(x− x̄) (5)

or

δf ≈
∣∣∣∣∂f∂x

∣∣∣∣ δx (6)

where under normal circumstances δx = σx. The variance is therefore

σ2
f =

1

N − 1

N∑
i=1

(fi − f̄)2 =
1

N − 1

N∑
i=1

(
∂f

∂x
(xi − x̄)

)2

(7)

If we have two variables, x and y,

f − f̄ ≈ ∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ) (8)

which gives us

σ2
f =

1

N − 1

N∑
i=1

(fi − f̄)2 =
1

N − 1

N∑
i=1

[
∂f

∂x
(xi − x̄) +

∂f

∂y
(yi − ȳ)

]2
(9)

after some algebra, this leads to

σ2
f =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + 2

∂f

∂x

∂f

∂y
σ2
xy (10)
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The final term with the two partials represents how the uncertainty in x and y are coupled;
this is the “covarience.” The covarience makes things ugly. If the variables are independent,
the uncertainties just add in quadrature, and we can easily find the uncertainty for functions
with many variables:

σ =

[(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y +

(
∂f

∂z

)2

σ2
z . . .

]0.5
. (11)

This formula is only strictly true for when the σ values are small compared to the partial
derivatives.

Example formulas
Function Standard deviation
f = aA σf = aσA
f = aA+ bB σf =

√
a2σ2

A + b2σ2
B + 2abσAB

f = aA− bB σf =
√
a2σ2

A + b2σ2
B − 2abσAB

f = AB σf ≈ |f |
√(

σA
A

)2
+
(
σB
B

)2
+ 2σAB

AB

f = A
B

σf ≈ |f |
√(

σA
A

)2
+
(
σB
B

)2 − 2σAB
AB

f = aAb σf ≈ |abAb−1σA| =
∣∣fbσA

A

∣∣
f = aebA σf ≈ |f(bσA)|

We can generally assume the covariance (σAB) is zero.

Let’s go back to our example with Newton’s Second Law. In the case that a is known exactly,

σF = aσm. If, however, there is uncertainty in a, σF ≈ |F |
√(

σm
m

)2
+
(
σa
a

)2
+ 2σma

ma
.

3 Regression and Goodness-of-fit
Let’s now discuss fitting a model to data. We will do a theoretical treatment here, but the
real work will come when we do the projects in the second half of this semester.

Most observations are compared with some sort of model, and often this comparison involves
fitting a function to the data (via regression). We then need to quantify the agreement
between the model and the data (by quantifying a goodness-of-fit). This tells us how good
the fit is, and whether we can trust the derived parameters.

Consider the following situations:

• You want to remove or measure the continuum emission from the spectral line data
above.

• You want to fit a Gaussian to the spectral line above to see how wide and tall it is,
and at what frequency the peak is (µ = νpeak in this case).

• You need to predict values you haven’t measured, based on values you have measured
that seem to follow a (yet unknown) functional shape. You could then fit a model to
the data and interpolate to find other values. In general, you need as many data points
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as there are variables.

All of these can be solved with regression fitting, coupled with a goodness-of-fit check.

Important note: for any regression method to work, you need to have more data
points than model parameters that you are fitting for (ndata > nvar). For instance,
in a linear function, y = mx+ b, you have two variables: m and b. In a quadratic function,
y = ax2 + bx + c, you have three variables (a, b, c) even if you set one of those variables is
zero. In these cases, the highest order term sets the complexity. The simplest model that
fits the data is always best! Put simply, you should generally never try to fit two data
points with a quadratic.1

3.1 Least Squares Regression

The earliest form of regression was the method of least squares, which was published by
Legendre in 1805, and by Gauss in 1809.

Let’s say you have x and y values for your data, and you want to fit a function ymodel(x)
to the data. The least squares method minimizes the sum of the residuals squared (sum
squared residuals, SSR), and thus you want to minimize the value of the SSR as given by:

SSR =
N∑
i=0

R2
i (12)

and
Ri = (yi,data − yi,model). (13)

You can see that under perfect conditions the summed squared residuals will be zero. It’s
not too difficult to actually optimize the fitted function (by varying all its input parameters
over a range) to minimize the summed squared residuals, but I won’t make you do it by
hand. We’ll use computers for that.

Although the un-squared sum of distances might seem a more appropriate quantity to min-
imize, use of the absolute value results in discontinuous derivatives which cannot be treated
analytically. The square deviations from each point are therefore summed, and the resulting
residual is then minimized to find the best fit line. This procedure results in outlying points
being given disproportionately large weighting.

3.2 Reduced χ2 Goodness-of-fit Assessment

Regression analysis itself, and the value of the SSR, don’t tell us whether the fit was good
or bad, nor does it tell us whether a linear model fit better than a quadratic model, or
some other model. To assess those things statistically, we need a metric for the goodness-
of-fit of the model. The most commonly used in many areas of astrophysics is the reduced
chi-squared method.

1I am still waiting for this advice to show up on a fortune cookie.
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One way in which a measure of goodness of fit statistic can be constructed, in the case where
the standard deviation of the measurement error is known, is to construct a weighted sum
of squared errors:

χ2 =
N∑
i=1

(yi,data − yi,model)
2

σ2
i

(14)

where σ again is the measurement error on data point i. This definition is only useful when
one has estimates for the error on the measurements, but it leads to a situation where a chi-
squared distribution can be used to test goodness of fit, provided that the errors represent a
Gaussian distribution.

Have a look at the equation; you can see immediately that as the standard deviation goes
up, χ2 goes down. This is saying that the goodness of fit is less stringent. We also see that
as the number of data points goes up, the χ2 goes up. This seems strange and wrong, so
let’s have a look at the reduced χ2 metric.

The reduced χ2 is simply the chi-squared divided by the number of degrees of freedom:

χ2
red =

χ2

F
=

1

F

N∑
i=1

(yi,data − yi,model)
2

σ2
i

(15)

Here, F is the number of degrees of freedom, usually given by ndata−nvar−1. The advantage
of the reduced chi-squared is that it already normalizes for the number of data points and
model complexity.

As a rule of thumb:

• χ2
red � 1 indicates a poor model fit (look at the equation... lots of data with small

errors far from model, or very few degrees of freedom, will give you a large χ2
red. This

may also happen if the error variance has been underestimated.

• χ2
red ' 1 indicates that the extent of the match between observations and estimates is

in accord with the error variance. In other words, this is as good as you can do.

• χ2
red � 1 indicates that the model is ’over-fitting’ the data (either the model is im-

properly fitting noise, or the error variance has been overestimated).

You can use χ2
red to therefore compare a few different models of different shape. The one

with the χ2
red closest to 1 will be the best model, with the same previous caveat before that

if you have two models with similar χ2
red values, the least complex one is usually the ideal

descriptor for your data.
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Assess yourself/study guide after lecture & reading (without peeking at notes)...

1. Assume a and b are constants, x and y are variables with standard deviations σx and
σy. Assume covariance is zero. Find the expression for the standard deviation for f in
each of the below cases.

(a) f = x+ a

(b) f = x+ y

(c) f = ax+ by

(d) f = axy

(e) f = axb

(f) f = aebx

2. If you tried the previous point, you would find that a ends up being consistent with
zero, with a huge error on the measurement of a (something like 0.001 +/- 5.0). The
χ2
red value quoted for the quadratic fit is similar to that of your linear function. Ask

yourself: which function was a better choice: linear or quadratic? Why?

3. Let’s say you measured the magnitude of a star over a few hours one evening, and
found the magnitude vs. airmass plot looked like a plot we have seen before:

How exactly would you go about determining precise values and measurement errors
for the k value and unextincted magnitude of this star?
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