
ASTR 367 — Stellar Interiors

C+O Chapter 10

We cannot directly observe stellar interiors, but must instead use observations of stellar
“surfaces” to infer what is going on inside.

There are four equations of stellar structure. This lecture mainly concerns deriving these
four fundamental equations.

Hydrostatic Equilibrium

Stars emit energy via fusion, which causes a pressure, or force, outward from their cores
(where fusion takes place). Gravity tries to contract stars, and so provides a pressure or
force inwards. These forces must be balanced in most stars, or else the stars would change
in size. The balance of these two forces is called “hydrostatic equilibrium,” and it is one of
the most important topics in understanding stars.

The equation of hydrostatic equilibrium can be derived following C+O, but I won’t repeat
that derivation here. The result is

dP

dr
= −GMrρ(r)

r2
= −ρg , (1)

where dP/dr is the radial change in the pressure outward from the core, Mr is the mass
interior to radius r, ρ(r) is the mass density at radius r, and g = GMr/r

2.

Equation 1 assumes that the star is stable, not contracting or expanding, which is the case for
stars on the main sequence. If the internal pressure is too great, the condition of hydrostatic
equilibrium fails and the star must expand or contract. We will return to this point when
discussing stellar evolution. This is the first equation of stellar interiors.

This equation states that in order to balance gravity, there must be a pressure gradient! The
minus sign shows that this gradient is such that pressure is highest at low r (in the star’s
core) and lowest at high r (at the star’s surface).

Mass Conservation

It is frequently useful to know how Mr varies with radius. We can logic our way to an
expression of mass conservation by assuming a thin spherical shell of mass dMr and thickness
dr. If dr � r, the volume is dV = 4πr2dr, and we can write

dMr = (4πr2dr)ρ(r) , (2)
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Figure 1: Temperature and pressure within the Sun.

or
dMr

dr
= 4πr2ρ(r) , (3)

which is the mass conservation equation. Given ρ(r), we can integrate this equation over all
r to get the star’s mass. This is the second equation of stellar interiors.

Luminosity Equation

The luminosity equation relates the luminosity gradient to the energy production rate. Since
luminosity is just energy per time, these quantities are natural to use.

If we have infinitesimal mass dm, the luminosity dL = εdm , where ε is the total energy
released per kilogram per second. For a star, dm = dMr = ρ(r)dV = 4πr2ρ(r)dr. Therefore,

dLr
dr

= 4πr2ρ(r)ε . (4)

This is our third equation of stellar interiors.

The Temperature Gradient

OK, so those three laws were not so tricky to derive. No such luck going forward, though.
The temperature gradient equation will require some work.

Part of the issue is that there are multiple ways for energy to escape a star. Let’s review!
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Figure 2: Mass and density within the Sun.

Figure 3: Luminosity within the Sun.
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We know energy is produced in stellar interiors and gets out of the Sun. There are three
mechanisms: radiation (emission of photons), convection (bouyant higher temperature gas
moving toward the stellar surface), and conduction (particles exchanging energy). Conduc-
tion is not as important in stars, so we’ll focus just on the first two mechanisms.

Equation of State

Before we go further, we need to dive into the stellar equation of state. Equations of state
are equations that tell us how pressure, volume, temperature, and/or energy are related.

The most familiar equation of state is the ideal gas law:

P = nkT , (5)

where n is the number density.

We can derive more general equations of state using the pressure integral:

Pgas =
1

3

∫ ∞
0

nppvdp , (6)

where P is the pressure p is the momentum, np is the number of particles of momentum p,
and v is the velocity. This equation looks confusing, but if we simply take the momentum
p = mv and use the Maxwell-Boltzmann speed distribution, we derive the ideal gas law.

We frequently want a different form of the ideal gas law, and so use the “mean molecular
weight”:

µ =
m̄

mH

, (7)

where mH is the mass of a hydrogen atom. The mean molecular weight is a misnomer, since
the particles can be atoms or ions too and we are concerned with mass, not weight - it’s
really just the mean mass per particle.

Rewriting the ideal gas law we get

Pgas =
ρkT

µmH

. (8)

What are some common values for µ? Values less than 1 are for ionized gas and those greater
than 2 are for molecules. This is the relevant equation of state for gas in a star.

Radiation pressure is also at play. For radiation pressure, the photons do not follow a
Maxwell-Boltzmann distribution. Instead, npdp = nνdν, which gives (after a few lines):

Prad =
1

3
aT 4 , (9)

where a is the radiation constant. This is the relevent equation of state for photons in a star.
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Radiative Temperature Gradient

Radiation Pressure

Problem 9.16 in C+O has you solve for the radial pressure gradient

dPrad

dr
= − κ̄ρ(r)

c
Frad , (10)

where κ̄ is the mean opacity and Frad is the force of radiation pressure. If we differentiate
the radiation pressure of Equation 9 by dr,

dPrad

dr
=

4

3
aT 3dT

dr
, (11)

and note that F = L/(4πr2) we arrive at the temperature gradient for radiative transport:

dT

dr radiative
= − 3

4ac

κ̄ρ(r)

T 3

L(r)

4πr2
. (12)

This expression says that the if the flux or opacity increases, the temperature gradient must
become steeper (more negative) if radiation is to transport the required luminosity outward.
This also applies to density increases or temperature decreases.

This is half-way there, but we also have to deal with convection.

Eddington Luminosity

But first, a quick aside... Very massive stars have extreme energy generation rates and
extreme radiation pressures. Since Frad = L(r)/4πr2, we can write

dP

dr
' −κρ(r)

c

L(r)

4πr2
. (13)

But hydrostatic equilibrium says

dP

dr
= −GMρ(r)

r2
. (14)

Putting these together, we have

LEd =
4πGc

κ̄
M . (15)

This is the “Eddington Luminosity”, the maximum luminosity a star can attain. It also sets
the maximum mass, around 100 M�.
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Convection

Convection is much more complicated, but we can arrive at some insight if we assume
adiabatic convection. Adiabatic means that no heat flows into or out of the gas. In this
case, we have the adiabatic gas law:

PV γ = K , (16)

where Pgas is the pressure, K is a constant, V is the volume, and γ is the “adiabatic index”
or heat capacity ratio. Common values for γ are γ = 5/3 = 1.666 for monotonic gas,
γ = 7/5 = 1.4 for diatomic gas, and γ = 4/3 = 1.333 for a plasma. The adiabatic index tells
you how much heat is required to raise the temperature; lower values of γ mean that more
heat is required.

If we then differentiate the ideal gas law,

dPgas

dr
= −Pgas

µ

dµ

dr
+
Pgas

ρ

dρ

dr
+
Pgas

T

dT

dr
(17)

and also differentiate the adiabatic gas law:

dP

dr
= γ

P

ρ

dρ

dr
(18)

If we further assume that µ is a constant, we can combine the above two equations with the
equation of hydrostatic equilibrium and simplify to obtain

dT

dr adiabatic
= −

(
1− 1

γ

)
µmH

k

GMr

r2
(19)

Radiation vs. Convection

Stars have radiative zones and convective zones. As we’ll see later, only low mass stars are
fully convective. The Sun has a radiative zone in the interior and a convective zone outside
of that. High mass stars have the opposite: radiative zones in their interiors and convective
zones outside.

Your book goes into a long derivation to determine when convection dominates over radiation.
The upshot is that convection dominates when

d lnP

d lnT
<

γ

γ − 1
. (20)

Although this equation is difficult to parse, we can say where convection will dominate: 1)
in regions of high opacity where dT/dr would be too large for radiative transport, 2) where
ionization is occurring, which causes a large specific heat and low temperature gradiant
dT/dr, or 3) where the temperature dependence on nuclear energy generation is large, so
dF/dr and dT/dr are large.
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Figure 4: Schematic of zones within the Sun.

Figure 5: Criterion for radiation/convection zones within the Sun.
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The Four equations of Stellar Structure

So, finally we can write our four equations:

dP

dr
= −GMrρ(r)

r2
= −ρ(r)g , (21)

dMr

dr
= 4πr2ρ(r) , (22)

dL

dr
= 4πr2ρ(r)ε(r) ., (23)

dT

dr radiative
= − 3

4ac

κ̄ρ(r)

T 3

L(r)

4πr2

dT

dr adiabatic
= −

(
1− 1

γ

)
µmH

k

GMr

r2

(24)

Togeter, these equations allow us to model energy production in stars.

Stellar Models

To construct a model star, we must simultaneously satisfy all four equations of stellar struc-
ture. Because physical quantities change as a function of r, these equations must be evaluated
in “shells,” or in 1D.

The boundary conditions are that Mr → 0 and L(r) → 0 as r → 0. Also, T, P, ρ → 0 as
r → R∗.

When is convection important? Lower mass stars are fully convective. This is important!
All the byproducts of fusion can be brought to the surface via convection. High mass stars
are not! For the Sun, convection dominates between 0.7R� and the photosphere, whereas
radiation dominates interior to 0.7�.

The change from radiative to convective happens because the Sun becomes opaque - radiation
has trouble escaping.

As we’ve said before, stellar mass is the only important parameter in determining a star’s
properties and subsequent evolution (the book phrases it differently, but this is the gist of
it).

Nucleosynthesis

Although we have now described the equations that govern stellar structure, we haven’t
talked about how stars actually make energy. We’ll focus here on “normal” stars that make
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Figure 6: Potential energy for nuclear reactions.

energy via fusion, as opposited to white dwarfs or neutron stars.

Nucleosynthesis is the process by which stars create energy via fusion. In the normal main
sequence portion of a star’s life, it fuses four hydrogen nuclei (protons) into one helium
nucleus (an alpha particle). This process has many steps, and can take many forms. Below
I’ll describe common pathways for the fusion reactions.

Reaction Rates

Stars create energy via nuclear fusion. To fuse together, elements must overcome the
Coulomb repulsion. If the Coulomb force can be overcome, then the strong force takes
over and fusion can begin. For proton-proton reactions, Figure 10.4 in your book gives the
relevant graph.

How do we get atoms close enough together? Collide them quickly! This is why fusion only
happens at high temperature. Atoms need sufficient kinetic energy to overcome the tunnel
through the Coulomb barrier. The derivation of the reaction rate is rather complex, but we
can determine the relevant terms.

To find the reaction rate in # reactions per unit volume per unit time, we can consider the
number of particles hitting cross sectional area σ. So the number of incident particles within
a cylindrical volume is

dNE = σ(E)v(E)niEdEdt . (25)
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Figure 7: Nuclear reaction probability for proton-proton.

Only particles with the correct energy matter, or niEdE = ni

n
nEdE so we can write

reactions per nucleus

time interval
= σ(E)v(E)

ne
n
nEdE . (26)

Deriving these terms gets a bit ugly, so I will say without proof that σ(E) ∝ dE
−1/2

and from
M-B, v(E) ∝ e−E/kT . Multiplying these two terms together results in a peak probability at
a particular energy. This peak probability is called the “Gamow peak” after the physicist
who first derived it.

Proton-Proton Chain

The proton-proton chain is the most common fusion sequence in most stars.

41
1H→4

2 He + 2e+ + 2νe + 2γ (27)

For one chain, the reactions are:

1
1H +1

1 H→2
1 H + e+ + νe (28)

2
1H +1

1 H→3
2 He + γ (29)

3
2He +3

2 He→4
2 He + 21

1H (30)

The first reaction is the slowest. This set of three equations is known as PPI, the most
common reaction to fuse hydrogen into helium. There are., however, other ways to fuse H
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Figure 8: The PPI chain.

into He. PPII and PPIII are separate chains that use the first steps of PPI; they are listed
in the book. These three chains together are known as the proton-proton chain.

Note the production of neutrinos (νe)! These will be important later.

The energy generated through the PP chain scales as temperature to the fourth power, when
the temperature is around 1.5× 107 K.

CNO Cycle

Larger stars can use the CNO cycle, in addition to PP. CNO stands for carbon, nitrogen and
oxygen, but these are just catalysts! No C,N, or O are produced in the CNO cycle. Hydrogen
is still being converted into helium, just through a different method.

The CNO cycle is strongly temperature dependent, the emitted energy scales as temperature
to the 19.9 power! This means that at higher core temperatures the CNO cycle takes over
energy production.

PP vs CNO

PP and CNO are the main reactions that power stars when they are on the main sequence.

The reactions of the CNO cycle require more kinetic energy to overcome the Coulomb barrier.
Additionally, the CNO cycle’s temperature dependence is much stronger. As a result, small
stars get essentially all their energy from PP, whereas large stars get essentially all of theirs
from CNO. Stellar mass stars get about half their energy from each.
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Figure 9: The CNO cycle.

Triple Alpha

During fusion, mass is converted into energy. The star’s mass actually decreases, gravity
is less powerful, and the pressure decreases so the star remains in hydrostatic equilibrium.
Thus, as a star ages, different fusion processes may become available.

The triple alpha process combines three helium nuclei (alpha particles) to create carbon.
This does not happen on the main sequence, only later in a star’s life. It requires very
high temperatures, and has a temperature dependence to the 41st power! That’s insane!
Combining two alpha particles makes a beryllium nucleus, which will decay rapidly if not
struck by a third alpha particle; thus high temperatures are required for the reactions to
proceed.

The End of the Road

There are yet more processes available at the end of a star’s life, fusing more and more
massive elements.

Reactions release energy (exothermic) until iron is produced. Iron is the peak of the binding
energy curve, which means that it requires a lot of energy to change its configuration. Re-
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Figure 10: Priple-alpha process.

Figure 11: Nuclear energy generation.
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Figure 12: The binding energy curve. Elements to the left of the line release energy via
fusion; those to the right release energy via fission.

actions making elements more massive that iron require energy (endothermic). The upshot
is that fusion only produces elements up to iron.
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