
ASTR 367

Interpreting Blackbody Emission

Reading: C+O, Ch 3.4

The blackbody (Planck function) is:

Bν =
2hν3

c2
1

ehν/kT − 1
. (1)

or

Bλ =
2hc2

λ5
1

ehc/λkT − 1
, (2)

where the function is evaluated at frequency ν or wavelength λ, and the object is at tem-
perature T . These functions are shown in Figure 1 for different temperatures.

Figure 1: Blackbody curves in linear (left) and log (right)-space. Wien’s Law can clearly be
seen.

Students are often confused by the units: erg cm−2 s−1 Hz−1 sr−1 (W m−2 Hz−1 sr−1) for Bν or
erg cm−2 s−1 cm−1 sr−1 (W m−2 cm−1 sr−1)for Bλ, where the additional “Hz” or “cm” term is
the frequency or wavelength (often given in Angstroms). This also means that it is a surface
brightness or an intensity.

The fundamental observational quantity in astronomy is the specific intensity Iν . But under
what conditions is Iν = Bν? When something called the “optical depth” τ is high. Looking
ahead a little to radiative transfer,

Iν(τν) = Iν(0)e−τν +Bν(T )(1− e−τ ) , (3)

where Iν(0) is the background radiation and τν is the optical depth. So as τ →∞, Iν(τν)→
0+Bν(T )(1−0) = Bν(T ). To summarize, the Planck function has units of specific intensity
or surface brightness, and in the limit of high optical depth, Iν = Bν .

There are a two important points about blackbody radiation.
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1. The wavelength (or frequency) of peak intensity is inversely related to the temperature
via Wien’s Law:

λmax =
0.2898

T ( K)
cm , (4)

or
νmax = 5.879× 1010T ( K) . (5)

We can derive these by setting the differential of Bλ or Bν equal to zero. This tells us
that hotter things peak at shorter wavelengths and higher frequencies.

In the infrared, we have some handy rules of thumb: a 30 K cloud peaks at 100µm,
and a 100 K cloud will peak at 30µm. Hot stars (30000 K) peak at 100 nm in the UV.
The Sun (6000 K) peaks at 500 nm in the visible (green).

2. A hotter blackbody has a higher surface brightness intensity at all frequencies. This
can be seen in Figure 1.

It is important to remember that more intensity at all frequencies does not necessarily
mean more energy! Think about burners on a stove. A small hot burner will have very
intense radiation. A large cooler burner will have less intense radiation. But the larger
one may boil water faster because although its intensity (surface brightness) is lower,
it emits more total energy. What matters is the product of the surface brightness and
the emitting area.

Let’s quantify this. To find the intensity (not the specific intensity), we integrate over
all frequencies or wavelengths:

B(T ) =

∫ ∞
0

Bν(T )dν . (6)

After some math, this integral results in the expression

B(T ) =
σT 4

π
, (7)

where σ is of course the Stephan-Boltzmann constant. In the case of an isotropic
radiation field, which we can frequently assume, it can be shown that Fν = πBν ,
so therefore F = σT 4. This is of course the Stephan-Boltzmann Law. We are often
interested in the total luminosity of an object (in erg s−1 or W):

L =

∫
S

FdA , (8)

the flux integrated over the emitting surface. For spherical objects, this leads to L =
4πr2σT 4, where r is the object’s radius. Thus, the total energy output is related to
the surface area and the temperature.
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Applications in Radio Astronomy

If we are on the right-hand (long-wavelength) side of the peak, we can Taylor expand the
exponential: ehc/λkT−1 ' 1+hc/λkT−1 = hc/λkT . In frequency units, we find ehν/kT−1 '
1 + hν/kT − 1 = hν/kT . We can therefore write

Bλ '
2ckT

λ4
(9)

or

Bν '
2ν2kT

c2
(10)

This is known as the Rayleigh-Jeans limit or Rayleigh-Jeans approximation. We almost
always assume this limit in radio astronomy. For example,

Sν =

∫
beam

IνdΩ , (11)

where Sν is the flux density [radio astronomy doesn’t use Fν for some reason], and the inte-
gration is over the telescope beam (not necessarily over the entire source!). If we approximate
the spectral shape of the source as that of a blackbody, we can refer to the temperature as
the brightness temperature, TB, and then

Sν =

∫
beam

BνdΩ =

∫
beam

2ν2

c2
kTBdΩ . (12)

What is the brightness temperature? It is the value that is needed to give the measured
flux Sν . Wikipedia’s definition: “Brightness temperature is the temperature a black body
in thermal equilibrium with its surroundings would have to be to duplicate the observed
intensity of a grey body object at a frequency ν.” This is of course not necessarily the kinetic
temperature. If the source has a constant surface brightness over the telescope beam,

Sν =
2ν2

c2
kTBΩ . (13)

Using Blackbodies

We can usually assume that stars emit similarly to blackbodies, in which case we know their
approximate spectral shape for a given temperature. Therefore, observations of stars using
astronomical filters can give you information about the temperatures of those stars. Since
the temperature and mass are related, we can get a proxy for mass.

The flux (or magnitude) that we measure depends on the filter used. In the optical we may
use the U, B, and V filters. We measure the convolution of the filter transmittance and the
source spectrum.
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Imagine two filters placed on a blackbody curve. The flux ratio of these filters will give you
some information about how the spectrum is decreasing. For example, if the flux ratio is
large (the longer-wavelength filter is reading much less), the decrease is steep and we must
be on the long wavelength side of a high temperature peak. If the flux ratio is small, we
must be on the short wavelength side of a low temperature peak. From our discussion of
magnitudes, we know that flux ratios are called colors. Colors therefore tell you about the
spectral shape, and the temperature of the object.

That colors are useful relies on the fact that stellar spectra are similar to that of blackbodies.
This is obvious from Figure 2 below (Figure 3.11 in Carroll & Ostlie), where the U-V and
B-V colors of stars are compared to those of blackbodies.

Figure 2: B − V and U − B colors for star of various spectral types. B0 is the largest and
M0 are the smallest mass stars in the diagram.

Astronomers use colors as a proxy for temperatures, for example on the color-magnitude
diagram, CMD. The CMD looks almost exactly like the H-R diagram because there is such
a clean mapping between colors and temperatures. Why use the CMD? The quantities
are entirely observable. In the H-R diagram, we often do not know the luminosity and
temperature, but we can easily measure magnitudes for a bunch of stars.
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Figure 3: A Color-Magnitude Diagram (CMD) (as in the earlier lecture). Each dot corre-
sponds to one star. Shown are the main sequence (MS), location of white dwarfs (WD), the
Horizontal Branch (HB), and the Giant Branch (GB). With time, stars evolve off the main
sequence, go up into the giant branch, back down into the horizontal branch, and eventually
become white dwarfs. The evolutionary tracks for stars of various masses are also shown.
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