
ASTR469 Lecture 2: Quantifying Light (Ch. 5)

1 Light from astronomical objects
Most astronomical objects emit light that changes as you tune to different frequencies in the
electromagnetic spectrum. Today we’re going to discuss how astronomers quantify the light
that is received on Earth within a particular frequency range ν + dν.

We can separate quantities into intrinsic properties of the astrophysical sources and measured
properties that we observe. The difference is that measured properties depend on your
distance from the source and the effects of intervening material, whereas intrinsic properties
do not. Let’s start with intrinsic properties.

2 Intrinsic source properties: Luminosity
Astronomical sources emit light due to various mechanisms (blackbody, synchrotron, free-
free emission, and other mechanisms we will later discuss). Those processes produce EM
waves, and those waves carry energy away from the source. A single photon has an energy
that depends on its frequency: E = hν.

Luminosity is a fundamental quantity that tells you how much energy per second is leaving
the surface an object.

Consider a 100 W light bulb; it emits 100 J s−1 of energy. This is its luminosity, also some-
times referred to as power. We typically use units of erg s−1 or W (J s−1). I will mostly stick
with the latter because it represents S.I. units. The Solar luminosity is 3.828 × 1026 W, so
the Sun’s intrinsic energy output is roughly equivalent to that of about 4× 1024 light bulbs.

OK, but what if we wanted to know how much luminosity was coming out at a given fre-
quency? In this case we use the “spectral luminosity,” Lν , which tells us the luminosity
that would be observed if you could only see at a particular frequency. The units of Lν are
W Hz−1. This is what astronomers frequently use, because our observations are usually at a
particular frequency.

The “bolometric luminosity” L, which we were previously discussing for the light bulb, is
simply the integral of the spectral luminosity over all frequencies:

L =

∫ ∞
0

Lνdν . (1)

In astrophysics we rarely use the bolemetric luminosity because our telescopes measure Lν .
If we measure Lν at a number of frequency bands, we can fit a spectrum that has a known
form and physical origin (like a blackbody spectrum, for instance, which we will discuss
later). Then, we can integrate that to get the bolometric luminosity.

Side note and sneak-preview... you have probably encountered luminosity before with the
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Stephan-Boltzmann law:
L = AσT 4 , (2)

where A is the emitting area, σ is the Stephan-Boltzmann constant, and T is the surface
temperature. This equation gives the total luminosity emitted from a blackbody-emitting
object. For spherical objects, of course A = 4πR2 because the light is going in all directions
at the same time. This formula is applicable for stars.

3 Measured Source Properties: Intensity and Flux

3.1 Intensity

Intensity is what telescopes measure. The spectral or “specific” intensity of radiation, Iν , is
the most basic observable quantity. Here, specific refers to the fact that it is measured at
one particular wavelength (thus the ν subscript), similar to spectral luminosity. The specific
intensity has units of energy, per unit time, per unit area, per unit frequency, per unit
steradian, or J s−1 cm−2 Hz−1 sr−1 (or in wavelength form, J s−1 cm−2 m−1 sr−1 or, instead
of m, fill in whatever wavelength units you want to use: nm, Angstrom, etc.).

The specific intensity goes by many other names, which can make things even more confusing;
sometimes people call it radiance, irradiance, brightness, or surface brightness. Annoyingly,
sometimes people also say “brightness” and mean “flux”. It’s kind of a mess.

Two important things about the specific intensity:
(1) It is independent of distance if the light travels through free space. Thus, the camera
exposure time and aperture setting for an exposure of the Sun would be the same, regardless
of whether the photograph was taken close to the Sun (from near Venus, for example) or
far away from the Sun (from near Mars, for example), so long as the Sun is resolved in the
photograph. This seems terribly wrong at first, but can easily be proven.
(2) Somewhat related to the previous point, it is the same at the source and at the detector.
Thus you can think of brightness in terms of energy flowing out of the source or as energy
flowing into the detector. Those two quantities will be the same.

We can conceptualize intensity as the energy dE passing through an infinitesimally small
area dA by:

dE = Iν dA cos θ dΩ dν dt , (3)

where θ is measured normal to the surface dA and dΩ is the solid angle. (For our mea-
surements, we can safely disregard θ since we are almost always observing normal to the
detector.) We can rearrange to find:

Iν =
dE

dA cos θ dΩ dν dt
. (4)

Notice that we wrote the spectral intensity in frequency units. Iν has a dependence on dν,
and dν 6= dλ. Instead, c = λν so

dν = −(c/λ2)dλ (5)
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Figure 1: The geometry for spectral intensity.

so combining with the above equations

νIν = λIλ (6)

To get the intensity or integrated intensity we would of course integrate over frequency or
wavelength:

I =

∫ ∞
0

Iνdν =

∫ ∞
0

Iλdλ (7)

As for bolometric luminosity, this is rarely done.

3.2 Flux

While intensity is perfect for extended sources, we are frequently more interested in the
quantity of flux integrated over solid angle:

Fν =

∫
Iν cos θdΩ (8)

or

Fν =

∫ 2π

0

∫ π

0

Iν cos θ sin θdθdφ . (9)

The units of flux are therefore J s−1 m−2 Hz−1 or W m−2 Hz−1. The integration is carried out
over the solid angle of the observations (not the source).

Why do we care about flux when we have a perfectly good unit of specific intensity? Re-
member that specific intensity is a surface brightness. The source may not be resolved, that
is, it may effectively be a single point of light. This is true for stars, for example, which
are unresolved with nearly all telescopes. So, for small, unresolved point sources, the flux is
a much better measure. For large, resolved sources the spectral intensity is generally more
useful.

We can relate the flux and luminosity with

Lν = 4πd2Fν , (10)

where d is the distance to the source.
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Figure 2: The definition of parallax.

Figure 3: The definition of a parsec. Note that this implies tan(1”) = 1AU
1pc

, which is a
convenient thing to remember if you forget the conversion from parsecs to meters.

4 Astronomical Distances and Source Sizes
Space is big and astronomers use special (non-S.I.) units for distances. The most useful is
the parallax, which is the distance at which the apparent position of a star changes by one
arcsecond (1/3600 of a degree) as the Earth goes around the Sun.

The equation is therefore d = 1/p for d measured in parsecs and p measured in arcseconds.
We define one “Astronomical Unit”, 1 AU, as the distance between Earth and the Sun. The
definition is fixed at 1 AU = 1.496× 1011 m. Therefore,

1 pc = 3.08× 1016 m (11)

.
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Assess yourself/study guide after lecture & reading (without peeking at notes)...

1. What measure would you use to determine the energy output of a source, and what
are its units?

2. What are the units of the energy that hits a detector (flux)? [Note: your detector has
a finite size.]

3. You’re looking at an object with constant intensity as a function of angular position.
It appears round, with an angular radius of 4”. You measure its spectral intensity as
104 W Hz−1 m1 sr−1. What is the total flux detected from the whole object?

4. You observe the flux of a point-source object in the distance to be 5 W m−2 Hz−1. If it
is 5 km away, what is the luminosity of the source?

5. Let’s say you have a detector operating at 1 THz frequency. The detector has a collect-
ing area of 2 m2 and is pointed directly at the target. How many photons per second
at that frequency are you detecting from an object of F1THz = 10−20 W m−2 Hz?
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