
ASTR 367

Stellar Spectra

Reading: (C+O) Chapters 8+9

Astronomy relies on the collection of light. Unlike most physical science disciplines, we
cannot modify what we observe, only how we observe it.

We will focus here on “spectra,” which are measurements of intensity as a function of fre-
quency or wavelength.

Basic Definitions

Spectra can be classified as being composed of “continuum,” the smoothly varying curve,
or “line,” which are sharper features seen in either absorption or emission. Continuous
emission comes from processes where the energy levels (and hence photon energies) are not
quantized. One example is a blackbody, which we talked about last time. A blackbody
function is smooth, indicating that the energies are not quantized. In contrast, line emission
relies on quantized energies. One example is electron orbital changes in an atom. The orbital
energies are quantized, so the line appears at discrete frequencies.

Figure 1: Examples of spectra.

Bohr Model (mostly from Wikipedia)

But first, a bit more background....

In the early 20th century, experiments by Ernest Rutherford established that atoms consisted
of a diffuse cloud of negatively charged electrons surrounding a small, dense, positively
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charged nucleus. Given this experimental data, Rutherford naturally considered a planetary-
model atom, the Rutherford model of 1911 - electrons orbiting a solar nucleus - however,
said planetary-model atom has a technical difficulty. The laws of classical mechanics (i.e.
the Larmor formula), predict that the electron will release electromagnetic radiation while
orbiting a nucleus. Because the electron would lose energy, it would rapidly spiral inwards,
collapsing into the nucleus on a timescale of around 16 picoseconds. This atom model is
disastrous, because it predicts that all atoms are unstable.

To overcome this difficulty, Niels Bohr proposed, in 1913, what is now called the Bohr model
of the atom. He put forward these three postulates that sum up most of the model:

• The electron is able to revolve in certain stable orbits around the nucleus without
radiating any energy contrary to what classical electromagnetism suggests. These
stable orbits are called stationary orbits and are attained at certain discrete distances
from the nucleus. The electron cannot have any other orbit in between the discrete
ones.

• The stationary orbits are attained at distances for which the angular momentum
of the revolving electron is an integral multiple of the reduced Planck’s constant:
mevr = nh̄mevr = nh̄, where n = 1, 2, 3, ... is called the principal quantum num-
ber, and h̄ = h/2π. The lowest value of n is 1; this gives a smallest possible orbital
radius of 0.0529 nm known as the Bohr radius. Once an electron is in this lowest orbit,
it can get no closer to the proton.

• Electrons can only gain and lose energy by jumping from one allowed orbit to another,
absorbing or emitting electromagnetic radiation with a frequency ν determined by the
energy difference of the levels according to the Planck relation: ∆E = E2 − E1 = hν
where h is Planck’s constant.

Rydberg experimentally derived an expression for the wavenumber emitted by transitions of
hydrogen atoms. This expression agreed with Bohr’s theory, and can be generalized to all
atoms as:
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This is known as the Rydberg formula, and the Rydberg constant R is
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where M is the total mass of the nucleus. The first term in this expression is defined as R∞.
We can also define the Rydberg constant for hydrogen: RH = R∞

mp
me+mp

.

We could rewrite the above expressions in terms of energy, since for photons E = hc/λ, so
1/λ = E/hc.
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Figure 2: Electronic transitions of hydrogen.

Kirchoff’s Laws

We will mostly concern ourselves with line emission from electronic transitions here. In such
cases, if an atom absorbs a photon with energy corresponding to the difference between two
electronic orbitals, the electron will transition from the lower to the higher orbital. This is
absorption, creating an absorption line; photons of that specific energy are removed from
the path. (Aside: these same photons can be emitted when the electron transitions back
to the lower level, but they do so isotropically, in 4π steradians.) The opposite is emission,
creating an emission line.

It is important to remember that absorption and emission are discrete properties, leading to
discrete spectral lines.

The spectrum you observe depends on the density (technically the optical depth; see next
section) of the object, and the viewing direction. Observing the same object from a different
direction or direction will give you a different signal. Kirchoff’s Laws tell us how to
interpret the spectra we observe. There are multiple sets of Kirchoff’s Laws, so it is safe to
assume that Kirchoff was wicked smart and interesting at parties.

Kitchoff’s three laws of spectra are:

• A dense object produces light with a continuous (blackbody) spectrum. Kirchhoff also
coined the term blackbody radiation because he was a show-off. You emit blackbody
radiation, with a peak in the infrared. You should be familiar with Wien’s law.

• A hot diffuse gas produces an emission line spectrum due to electronic transitions
within the gas. Fluorescent lights are a good example.
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• A hot dense object surrounded by a cool tenuous gas (i.e., cooler than the hot object)
produces an absorption line spectrum. The absorption lines are at exactly the same
wavelengths as the emission lines for a given element, and are also due to electronic
transitions.

Stars show absorption line spectra in almost all cases. Why?

Figure 3: Illustrations of Kirchoff’s Laws.

Strength of Spectral Lines

The strength of spectral lines must depend on having elements present, and in the correct
electronic configurations.

Optical Depth

Optical depth (τ) goes from 0 (optically thin) to infinity (optically thick). A window,
for example has an optical depth of approximately zero in the optical regime. A wall has
a very high optical depth in the optical. Optical depth is wavelength dependent, however.
Windows are opaque (optically thick) for UV radiation. Walls are transparent (optically
thin) for X-rays. We usually think of an optical depth of approximately unity as being the
transition between optically thick and optically thin. The concept of optical depth is a bit
opaque (ha!), but is absolutely essential to understanding interstellar radiation.

If something is optically thick, you only see the top layer. On average, we see down to an
optical depth of about 1. For optically thick material, this may not be very far into the
material. For a wall, we reach an optical depth of unity within the thin layer of paint. If
you want to estimate how much of something there is, you cannot easily do it if the object
is optically thick. In this case, you don’t know the total depth, in the same way that you
don’t know how thick the classroom walls are from observations within the classroom. If
a material is optically thin, you get emission or absorption from the entire line of sight. If
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Figure 4: THE SUN! Notice the limb-darkening.

you know how the material emits or absorbs, you can estimate the amount of the emitting
substance much more readily.

Optical depth is wavelength dependent (τν). For an emission line spectrum, the optical
depth is zero where there is no line (and no continuum), and some positive value at the line
(highest at line center). In other words, we can replace the intensity axis with τ .

Opacity

Optical depth is closely related to opacity, κ:

τν =

∫
κνρds , (3)

where ρ is the mass density and the integration is over the path length. Opacity is intrinsic
to the material, whereas optical depth is integrated along the path. We can see from the
equation that opacity must have units of area/mass.

We can think of opacity as the analogue of emission. High opacity means that the element
is able to absorb at that frequency. The element therefore must be in the correct electronic
state (if applicable), and the correct ionization state (more on these later). The more of an
element, the stronger the opacity. Therefore, κν = κν(ρ, T,Xi).

Stellar opacity turns out to be incredibly important, as it is related to the luminosity. Opacity
can remove photons from the medium (absorption) or simply redirect them and remove them
from the line of sight (scattering).
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There are five primary sources of opacity:

• Bound-Bound, κ˘,bb. The photon excites an electron and the electron then relaxes back
to the ground state, releasing photons. These are sharp features, because only certain
photons can cause the transitions. If there are multiple steps between the excited and
ground states, multiple photons can be released, each of less energy than the original.
The net result will be a redenning of the spectrum.

• Bound-free, κ˘,bf . These are photoionizing interactions. Any photon with energy
greater than the ionization potential of the atom/molecule in question can photoionize
it.

• Free-free absorption, κ˘,ff . Free electrons near ions can absorb photons over a contin-
uous range of wavelengths.

• Electron (Thompson) scatering, κ˘,es. Electrons can also scatter, or change the direc-
tion of, photons. This results in continuum opacity.

• H− Continuum Opacity, κH− . It may seem strange, but hydrogen can capture an extra
electron, leading to something called H−. H− only forms in relatively low temperatures,
say for F0 stars and later. The ionization potential of H− is just 0.754 eV, which means
that a large number of photons can ionize it. It is a significant source of opacity.

We can define a Rosseland Mean Opacity to attempt to determine an opacity averaged over
all wavelengths that depends only on the temperature. Because the sources of opacity are
complicated, this is not a trivial calculation! One result is in Figure 9.10 of your book.

We typically see no further into a star (or anything optically thick) than unity optical depth.
A more careful treatment actually shows that the level within a stellar atmosphere from
which most of the photons of wavelength λ escape is at optical depth τλ ' 2/3. Indeed, the
condition τλ ' 2/3 defines the stellar photosphere – the layer of a stars atmosphere from
which the light we see originates.

There are two consequences of this realization. First, the condition applies to all viewing
angles; therefore, the distance ds corresponding to the condition τλ = 2/3 will probe further
into the stars interior at the center of a stellar disk than at its edges. Second, recalling the
definition of optical depth, it is obvious that if the opacity κλ increases at some wavelength,
then ds must be smaller to satisfy the condition τλ = 2/3. Thus, we see further into a
star in its continuum light than at the wavelengths of discrete absorption lines. These two
effects explain a phenomenon known as limb darkening, first recognised in the Sun, whereby
the light emitted in successive annuli from the centre decreases in intensity and becomes
progressively redder. Sightlines near the limb do not penetrate as deeply into the Suns
atmosphere by the time τλ = 2/3 is reached; since the Suns temperature decreases outwards
from the center, such sightlines see light from cooler regions of the Suns atmosphere.
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Figure 5: Computation of the Rosseland mean opacity. The curves are the logarithm of the
density.

Maxwell-Boltzmann Speed Distribution

What is a maxwellian distribution?

f(v) =

√( m

2πkT

)3

4πv2e−
mv2

2kT , (4)

where m is the particle mass and kT is the product of Boltzmann’s constant and thermody-
namic temperature. This probability density function gives the probability, per unit speed,
of finding the particle with a speed near v. The most probable speed (peak of f(v)) is:

vp =

√
2kT

m
, (5)

and the mean speed is

〈v〉 =

∫ ∞
0

v f(v) dv =

√
8kT

πm
=

2√
π
vp . (6)

(from Wikipedia) The Maxwell-Boltzmann distribution applies to the classical ideal gas,
which is an idealization of real gases. In real gases, there are various effects (e.g., van der
Waals interactions, relativistic speed limits, and quantum exchange interactions) that make
their speed distribution sometimes very different from the Maxwell-Boltzmann form. That
said, rarefied gases at ordinary temperatures behave very nearly like an ideal gas and the
Maxwell speed distribution is an excellent approximation for such gases.
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Figure 6: MB distribution illustrations.

This is in 3D! We actually measure only 1D. Keep this in mind for later.

What is the mean free path?
mfp = 1/nσ , (7)

where n is the particle density and σ is the particle cross section. Another way of saying this
is that collisions dominate in LTE over other (radiative) processes. Obviously, high density
environments are more likely to be in LTE.

The mean time between collisions is mfp/v , where v can be from the M-B distribution.

So let’s return to our Bohr model. The Bohr model says that photons are emitted or
absorbed when electrons change energy levels. More energetic photons are created when
those energy level changes are larger. How can we populate the upper levels in an atom? By
collisions with fast moving particles! So as the temperature increases, different emission and
absorption lines will dominate. We can tell from a star’s spectrum what it’s temperature is!

Spectral Type Surface Temperature Distinguishing Features
O > 25, 000K H; HeI; HeII
B 10,000-25,000K H; HeI; HeII absent
A 7,500-10,000K H; CaII; HeI and HeII absent
F 6,000-7,500K H; metals (CaII, Fe, etc)
G 5,000-6,000K H; metals; some molecular species
K 3,500-5,000K metals; some molecular species
M < 3, 500K metals; molecular species (e.g., TiO)
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Figure 7: Stellar spectra.

Boltzmann Equation

The single most important equation in stat. mech. for us is the Boltzmann Equation. We
can define the relative density within state i as

ni = gie
−Ei/kTex , (8)

where ni is the density in state i, gi is the degeneracy of state i, Ei is the energy associated
with that state and Tex is the “excitation temperature.” If we want to know the relative
density between two states,

ni
nj

=
gi
gj

e−Ei/k Tex

e−Ej/k Tex
=
gi
gj
e−Eij/k Tex , (9)

where Eij = Ei − Ej is the energy difference between the two states.

Let’s take hydrogen as an example, levels n = 1 and n = 2. For hydrogen, En = 13.6 eV/n2.
For n = 1, E1 = 13.6 eV. For n = 2, E2 = 3.4 eV. Therefore, Eij = 13.6 eV − 3.4 eV =
10.2 eV. Degeneracies gn = 2n2 so g1 = 2 and g2 = 8.

While this equation gives the relative densities between states, we are frequently interested
in the fractional density of a given state compared to all states. In such cases, we need to
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use the “partition function,”

Z(Tex) =
∞∑
j

gje
−Ej/k Tex (10)

So that
ni
nT

=
gie
−Ei/k Tex

Z(Tex)
, (11)

where nT is the total population.

The excitation temperature is not a physical temperature! It is instead the temperature at
which the Boltzmann equation is satisfied. When is Tex = Tk the kinetic temperature? When
collisions are frequent! Assume we have two competing processes: collisions and radiation,
and that the kinetic (collision) temperature Tk and radiation temperature (TR) are different.
If the timescale for collisions is smaller than the timescale for photon-particle interactions,
Tex ' Tk.

For another example, assume that the population levels are inverted such that the upper
level is overpopulated relative to the lower level, then Tex is negative. This is allowed because
Tex is not a real temperature. These population inversions can result in masing emission.

It is also worth noting that the excitation temperature only corresponds to the transition
between the upper and lower levels. Each transition can have a different excitation temper-
ature.

Radiation temperature, TR, is the the equivalent temperature blackbody that would emit
the same intensity at the frequency of interest. This is also sometimes called the background
temperature, TBG or T0. In the limit of low frequencies where the RJ limit applies, the
brightness and radiation temperatures are the same.

IF Tk = TR = Tex = T , the system is in thermodynamic equilibrium (TE). This happens
when the particle energy distribution follow the Boltzmann equation (and ionization states
follow Saha, see below), the particle velocity distributions follow MB, and the radiation field
is a Planck function at temperature TR.

If Tk = Tex 6= TR, the system is in local thermodynamic equilibrium, LTE. LTE is much easier
to attain and is commonly assumed. This is often good enough when collisions dominate
over radiative processes. “Local” here refers to ∼ one mean free path.

In LTE, the changes in temperature must vary slowly, so that at each point in the object
of interest we can assume TE. That temperature is that of the particles, which follow a
Maxwellian distribution with a single temperature, for all particle species. In other words,
the temperature gradient scale must be small compared to the mean free path of the particles.
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Saha Equation

The Saha ionization equation relates the ionization state of an element to the temperature
and pressure.

For a gas composed of a single atomic species in LTE, only concerning two states (excited
and not as excited) the Saha equation is written:

ni+1ne
ni

' 2

(
2πmekT

h2

)3/2
gi+1

gi
exp

[
−Φr

kT

]
, (12)

where ni is the density of atoms in the i-th state of ionization, that is with i electrons re-
moved.
gi is the degeneracy of states for the i-ions
Φr is the energy required to remove i electrons from a neutral atom, creating an i-level ion
(the “ionization potential”).
ne is the electron density
me is the mass of an electron
T is the temperature of the gas
kB is the Boltzmann constant
h is Planck’s constant .

Hydrogen is particularly simple. The degeneracy for the ground state of hydrogen is 4
(proton spin up, electron up; p up e down; p down e up; p down e down). The degeneracy
for the ionized state is 2. We therefore have:

nH+ne
nH

'
(

2πmekT

h2

)3/2

exp

[
−13.6 eV

kBT

]
, (13)

The Equation of Radiative Transfer

Now that we have some background, let’s consider radiation with intensity Iν entering a slab
of material that has a thickness ds. On the other side of the slab the intensity is Iν + dIν ,
where dIν could be negative. We can describe the radiation thusly:

dIν = −Iνκνρds+ jνds . (14)

The term −Iνκνρds is the net change in Iν due to absorption and stimulated emission and
jνds is the change in Iν due to spontaneous emission by the slab material. κν is the opacity at
frequency ν. The attenuation coefficient is normally positive, but can be negative for masers.
It has dimensions of 1/length. jν is the emissivity at frequency ν. It also has dimensions of
power per unit volume per unit frequency per unit solid angle.
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Figure 8: Spectral types and common spectral lines.

The optical depth is intimately related to the opacity. This makes sense. Something has to
be causing the optical depth!

dτν = κνρds (15)

or

τν =

∫ s

0

κνρds = κνρds (16)

so therefore
dIν = −Iνdτν + Sνdτν . (17)

We introduced a new term, Sν , which is the source function,

Sν =
jν
κνρ

. (18)

The source function describes the change in emission along the line of sight. In LTE, Sν(T ) =
Bν(T ) = jν/κνρ . This is another powerful thing about LTE: it directly relates measurements
to the emission and absorption properties of the material.

We can integrate the transfer function by multiplying by eτ , because it works.

eτν (dIν + Iνdτν) = eτνSνdτν (19)

d(eτνIν) = eτνSνdτν (20)

If we define τν = 0 at Iν(0),

eτνIν − Iν(0) =

∫ τν

0

eτ
′

Sνdτ
′

(21)

multiply by e−τν

Iν(τν) = Iν(0)e−τν +

∫ τν

0

eτν−τ
′
νSνdτ

′
. (22)
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The intensity Iν at optical depth τν is the initial (background) intensity Iν(0) attenuated by
a factor eτν , plus the emission Sνdτ

′
integrated over the path, itself attenuated by the factor

eτν−τ
′
ν .

This is the most general form. If LTE holds, Sν = Bν(T ). Furthermore, if T is constant
throughout the slab, we can simplyfy Equation 22 considerably:

Iν(τν) = Iν(0)e−τν +Bν(T )(1− e−τ ) . (23)

This is the usual form used, but assumes LTE and a constant temperature throughout the
slab. These are not exactly the same thing since the former depends on the mean free path
(the density), and the latter depends on the slab thickness.

It is worth examining this equation a bit more in limiting cases:

(1) If the slab optical depth is zero, we get Iν = Iν(0), simply the background intensity back.
If there is no optical depth, we get neither emission nor absorption from the slab (like a
window!). This illustrates how emission and absorption are intimately related.

(2) If the slab optical depth is infinite, we get Iν = 0 + Bν(T ). In this case, there is no
radiation from the background. It is all absorbed by the back side of the slab. Optical
depth cuts both ways: if it is optically thick for us as observers, it is optically thick for the
background radiation as well.

Interesting features:
(1) As τ → 0, e−τ → 1−τ . Thus, Iν → Iν(0)(τ−1)+Bν(T )τ and ∆Iν → τν(Bν(T )−Iν(0)). In
the absence of background emission, we just measure the excitation temperature multiplied
by the optical depth.
(2) As τ → ∞, Iν → Bν(T ) and ∆Iν → Bν(T ) − Iν(0). For optically thick materials,
the measured antenna temperature is simply the Planck function! Thus, for optically thick
materials, we can readily estimate their temperatures.
(3) If the Planck function of the material is greater than the background temperature, the
line is seen in emission.
(4) If the excitation temperature is less than the background temperature, the line is seen
in absorption.

Line Broadening

Emission and absorption lines are not delta functions, they are broadened by some mechamisms.
What can broaden spectral lines?
1) Thermal doppler motion due to gas particles at a given temperature, “Doppler broaden-
ing.” Not all particle speeds will be the same of course. As the temperature increases, the
range of speeds does too.
2) “Turbulent broadening” due to the fact that there are bulk motions within any gas.
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3) Natural broadening due to the fact that the energy “level” is not a single value, and
4) Pressure or collisional broadening, which changes the energy levels.

Each of these mechanisms has an associated line shape. Doppler broadening is Gaussian,
and turbulent is usually assumed to be Gaussian as well. Natural and Collisional broadening
are “Lorenzian,” which is like a Gaussian but with much larger “wings.” All four processes
operate at the same time, resulting in a “Voigt” profile with a Gaussian core and Lorentzian
wings. Since the Lorentzian wings are at low intensity, usually a Gaussian is observed.

Gaussians are magical functions. A normalized Gaussian takes the form of

φ(ν) =
1

σ
√

2π
e
−
(

(ν−ν0)
2

2σ2

)
. , (24)

where ν0 is usually the line center and σ is the one-dimensional velocity dispersion. You can
see that the line will be of maximum intensity when ν = ν0 at line center, then φ(ν0) = 1

σ
√
π
.

We can also define the full-width at half-maximum (FWHM) as

FWHM =
√

8 ln2σ = 2.355σ . (25)

Gaussians have the amazing property that the area under the curve is approximately the
FWHM times the peak. They are also their own Fourrier transform pair, and a Gaussian
convolved with a Gaussian leads to another Gaussian. This last point is very important in
astronomy. Frequently, the response of your instrument can be assumed to be Gaussian, and
the source or spectral line Gaussian as well. Therefore, you will observe a Gaussian.

Why do we get Gaussians? We had the MB velocity distribution before:

f(v) =
( m

2πkT

)3/2

4πv2e−mv
2/2kT . (26)

What you have probably never seen is that in 1D the 4πv2 term goes away. This term
arises in 3D due to the density of velocity states available (see Hyperphysics site). This is a
Gaussian!

We can define:

σv =

(
kT

m

)1/2

= 9.12

(
T4

m/amu

)1/2

km/s , (27)

where T4 is the temperature in units of 104 K. The FWHM is 2.355σ, or

FWHM = 2.355σ = 21.47

(
T4

m/amu

)1/2

km/s . (28)

We can convert between velocity and frequency/wavelength using the Doppler formula

∆λ

λ
=

∆v

c
. , (29)
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were ∆ν is the broadening in frequency, ν is the central frequency of the line, and v is the
broadening in velocity units. This leads to:

f(v) =
1√
2π

1

σv
e−u

2/2σ2
v . (30)

You can see how the velocity dispersion σv goes into the Gaussian. The thermal line width
increases with increasing temperature and decreases with increasing mass.

We can assume that turbulence adds another Gaussian term, and we can add the thermal
and turbulent components in quadrature, which leads to

σ =

(
kT

m
+ v2

turb

)1/2

, (31)

We often don’t know vturb, but given a spectral line we can determine it from the linewidth
if we can estimate the temperature.

The natural width arises due to the uncertainty principle: ∆E∆t ∼ h̄. Here, ∆t = A−1
u` , so

short-lived states have large uncertainties in energy. Because Au` ∝ ν3, ∆E ∝ ν3. Natural
broadening is important at high frequencies. It gives rise to a Lorentzian profile function

φ(ν) =
γ

4π2

1

(ν − ν0)2 + (γ/4π)2
, (32)

where γ is a constant for each species related to the spontaneous decay rates

γ = ΣAu`. (33)

Like natural broadening, collisional broadening distorts the energy levels, leading to an
additional Lorentzian term that can be combined with natural broadening:

φ(ν) =
Γ

4π2

1

(ν − ν0) + (Γ/4π)2
, (34)

where Γ = γ + 3νcol , and νcol is the collision frequency, νcol = nσv.

In the radio, Doppler and turbulent broadening are typically the largest. At high frequencies
(X-ray), natural braodening can make a large contribution.

Characterizing Spectral Lines

It is often preferable to fit a line profile to a spectral line in order to characterize its emission.
An alternative method, called the “equivalent width,” is insensitive to the exact profile. The
equivalent width is the width, in wavelength or frequency units of a rectangular area equal
to that of the spectral line:

Wλ =

∫
(1− Fλ/F0)dλ (35)
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Figure 9: Equivalent width.

Figure 10: Line saturation for various optical depths
(http://spiff.rit.edu/classes/phys440/lectures/curve/curve.html).

The intensity of a spectral line changes with the optical depth at line center. This is usually
parameterized as the change in the optical depth, or the change in “column density,” the
integral of the number density over the pathlength.

Let’s assume we have an absorption line and no source function:

Iν
Iν,0

= e−τν (36)

Initially, the more absorbing atoms there are, the stronger the absorption line. If we keep
adding absorbers to the path, however, eventually the line will saturate. A saturated line
means that at line center (the most probable speed in a MB distribution) no more intenisity
can be added. After it saturates, the equivalent width grows slowly, because there are few
atoms with the requisite speeds, until the growth of the line wings becomes important.

The column density is a fundamental quantity in astronomy, since it is directly related to
what we measure. Since κν ∝ n and τν =

∫
κνρ ds, τ ∝

∫
n ds = N . This is the number of

particles along a 1 cm2 cylinder path.

This leads to three important regimes:

16



Figure 11: The curve of growth. The x-axis is parameterized in terms of the oscillator
strength, which is a parameter unique for each transition.

1) The “Linear” regime (τ . 5) where the equivalent width W is proportional to the column
density, W ∝ N .
2) The “saturated” regime where W ∝

√
lnN , and

3) The “damping” regime where collisional broadening takes over, W ∝
√
N .
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