
Compact Objects, Prialnik Ch 9 for WDs

White Dwarfs, Neutron stars and Black Holes

Compact objects are the end products of stellar evolution. The primary factor determining
whether a star ends up as a white dwarf, neutron star, or a black hole is the star’s mass.

Compact objects differ from normal stars in that they are not supported against collapse
by fusion. In a white dwarf, the gravity is balanced by the electron degeneracy pressure.
However, once the density of matter approaches nuclear density, the degeneracy pressure of
neutrons becomes important (at such high density, inverse beta decay converts protons into
neutrons). A neutron star is thus supported by the degeneracy pressure of neutrons. Black
holes, on the other hand, are completely collapsed stars, i.e., stars that could not find any
means to hold back the inward pull of gravity and therefore collapsed to singularities.

White Dwarfs

For low-mass stars (≲ 8 M⊙), the core is left behind when the stars go planetary nebula.
These cores are then white dwarfs: very small, very hot, very low luminosity objects. WDs
result from AGB stars.

Usually, white dwarfs are composed of carbon and oxygen and the progenitor mass is less
than 8 M⊙. Some flavors of white dwarf do have different compositions though.

If the mass of the progenitor is between 8 and 10.5 solar masses, the core temperature will
be sufficient to fuse carbon but not neon, in which case an oxygen/neon/magnesium white
dwarf may form. Although helium in most white dwarfs could be fused, this isn’t always
true for low mass stars. Stars of very low mass may accrete He from a binary companion,
and so may have He in their outer layers.

Exercise

Let’s compute the basic properties of white dwarfs! Take a 20,000 K White Dwarf on the
0.5 M⊙ line and compute its
- Radius (from the luminosity and temperature. Earth’s radius is ∼6000 km)
- Density assuming its mass is 0.5 M⊙ (density of the Earth is ∼ 5 g cm−3 and water is
1 g cm−3)
- Central pressure (from hydrostatic equilibrium assuming constant density)
We can also use the expression derived in-class for constant density:

Pc ≈ 2/3πGρ2R2 (1)

For the mass of the Sun and radius of the Earth, this works out to Pc ≈ 4 × 1022Nm−2,
which is ∼1.5× 106 times that of the Sun.
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Figure 1: A portion of the H-R diagram showing white dwarfs. Notice that the 0.5 M⊙ line
is sloping toward the 0.01R⊙ line. What does that imply?

WD Temperatures

We can make similar arguments for non-convective stars:

dT

dr
= − 3

4ac

κ̄ρ

T 3

Lr

4πr2
(2)

It is not radiation that carries energy to the surface, but rather electron conduction. We can
still approximate things with this relation though. The temperatures go from the surface
temp to the central temperature. The radius goes from the radius of the white dwarf to zero,
so

Twd − Tc

R− 0
= − 3

4ac

κ̄ρ

T 3
c

Lr

4πR2
(3)

We can get the surface temperature from observations, and R from the above calculations.
If, however, we assume the surfact temperature is 0 K and that κ = 0.02m2 kg−1, and we
get Tc ≈ 107 − 108 K. This temperature is plenty high for hydrogen fusion. Since white
dwarfs do not have fusion, we know that they must be largely devoid of hydrogen. What
little hydrogen they have is on the surface; the more massive elements are drawn toward
white dwarf cores.

WD Luminosities

The Big Orange Book derives an expression for the WD luminosity, but it’s kind of a long
derivation and not terribly informative. The result is interesting though:

L/L⊙ = CT 7/2
c , (4)

where C is a constant that is

C = 6.65× 10−3

(
M

M⊙

)
µ

Z(1 +X)
(5)
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Figure 2: The temperature of WDs is isothermal out to the edge.

Or, following our book:

L/L⊙

M/M⊙
≈ 6.8× 10−3

(
TC

107 K

)7/2

(6)

A white dwarf’s faint luminosity comes from the emission of stored thermal energy; no fusion
takes place in a white dwarf and there is no further contraction to release gravitational
potential. Because white dwarfs are the end point of all low-mass stars, which are very
numerous (over 97% of the other stars in the Milky Way), there should be lots of white
dwarfs in the Universe. Because they are faint, however, they are difficult to find.

Types of White Dwarfs

Stamp collecting!
White Dwarfs can be classified based on their spectra. DA white dwarfs have hydrogen
absorption lines in their spectra. These lines are extremely pressure broadened due to the
high pressures in the white dwarf surfaces. White dwarfs are mostly carbon and oxygen, but
some do have trace amounts of hydrogen. 2/3 of all WDs.
DB white dwarfs have helium absorption lines ,but lack hydrogen. 8% of all WDs.
DC white dwarfs have no lines, they are black bodies. 14% of WDs.

White Dwarf Cooling

Energy in white dwarfs does not escape most efficiently from photons. In fact, it is electron
conduction that provides the dominant energy transportation method. In a WD, electrons
can travel large distances before interacting with another nucleus. As a result, WDs are
basically isothermal. The only place that is not isothermal is the outer shell of material.
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So how does a WD cool? Well, the WD’s energy is thermal, and each nucleus has 3/2kT of
energy. Therefore, the thermal energy of a WD is

U =
M

AmH

3

2
kTc , (7)

where AmH is the mass of one nucleus. The characteristic timescale (not the cooling time)
is

τ =
U

L
=

3

2

Mk

AmhCT
5/2
c

(8)

The time to cool is given by

−dU

dt
= L (9)

or

− d

dt

(
M

AmH

3

2
kTc

)
= CT−7/2

c , (10)

which can be integrated to find

Tc(t) = T0

(
1 +

5

2

t

τ0

)−2/5

, (11)

where τ0 is the cooling timescale and T0 is the initial temperature. We can use our expression
for the luminosity to find

L(t) = L0

(
1 +

5

2

t

τ0

)−7/5

, (12)

These equations tell us that the luminosity decays quickly at first, but slows its rate of change
with time.

Over a very long time, a white dwarf will cool and its material will begin to crystallize,
starting with the core. The star’s low temperature means it will no longer emit significant
heat or light, and it will become a cold black dwarf. Because the length of time it takes
for a white dwarf to reach this state is calculated to be longer than the current age of the
universe, it is thought that no black dwarfs yet exist. The oldest white dwarfs still radiate
at temperatures of a few thousand kelvins. White dwarfs have an extremely small surface
area to radiate this heat from, so they cool gradually, remaining hot for a long time.

Note that our book has an alternative derivation, copied below:
We can get an expression for the cooling rate because we know that the energy comes from
the thermal energy of the ions in the core:

U =
3

2
RMTc (13)

L = −dU

dt
= −3

2

R

µ
M

dTc

dt
= −3

7

R

µ
M

Tc

L

dL

dt
(14)
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After some algebra:

−dL

dt
∝ MT 6

c . (15)

So the cooling decreases sharply with the decreasing temperature. A low mass (cooler) white
dwarf evolves slowly.

Neutron Stars

Stars with masses > 8 − 10 M⊙ can produce neutron stars instead of white dwarfs. The
electron degeneracy that creates white dwarfs is not strong enough to support the increased
mass, leading to neutron degeneracy (neutrons are also fermions). The process of creating
neutron stars is that of electron capture. At high densities (∼ 1 × 1010 kgm−3), the low
energy arrangement allows for

p+ + e− → n+ νe (16)

Thus, at high densities, the stellar remnant is entirely neutrons.

Neutron star radii

Neutron stars are (barely) nonrelativistic, so γ = 5/3 and n = 3/2. Using the relationship
between central pressure and density appropriate to polytropes,

Pc = (4π)1/3BnGM2/3ρ4/3c , (17)

Combining this with the pressure-density relation for a degenerate neutron gas, we get

K1ρ
5/3 = (4π)1/3BnGM2/3ρ4/3c (18)

After some manipulation, and using values for n = 3/2 polytrope constants, we find

R = 14

(
M

1.4M⊙

)−1/3

km. (19)

This R is only slightly higher than what we get using more sophisticated models (∼10 km)
for neutron stars that have had a chance to cool off from their initial formation and become
fully degenerate.

The slight discrepancy is due to several reasons: (i) the fluid is not purely neutrons; there
are some protons too, which do not contribute to the neutron degeneracy pressure, (ii) the
neutrons are not too far from being relativistic and this reduces their pressure compared
to the fully non-relativistic pressure we have used above, and (iii) the neutron matter also
has a considerably more complex structure than a simple degenerate electron gas due to the
nuclear forces between the neutrons.

Just like WDs, neutron stars follow the mass-volume relationship: MV = constant. Just
like WDs, they also have a mass limit. For NSs, this limit is 2.2 M⊙ for non-rotating and
2.9 M⊙ for rotating. Collapse of a neutron star leads to a black hole.
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NS Rotation

Neutron stars are rapidly rotating, due to conservation of angular momentum during col-
lapse1. Angular momentum is L = Iω, so we can write

Iiωi = Ifωf . (20)

The moment of inertia I = CMR2 where C is a constant that depends on the geometry
(C = 2/5 for a sphere). Thus, assuming the mass is unchanged.

R2
iωi = R2

fωf . (21)

ωf = ωi

(
Ri

Rf

)2

. (22)

But what is the initial radius? It’s the radius of the core, which is basically the radius of a
WD. Dividing our two expressions for the radius of NS and WDs, we find

Rcore

Rns

≈ 500 (23)

Thus, a NS is spinning 104 times faster than its progenitor! That’s a lot!

Magnetic Fields

Another important property of neutron stars is that they are superconductors, i.e., they have
nearly infinite electrical conductivity. Therefore, electric currents flow with essentially no
resistance and magnetic fields diffuse very little. Therefore, the magnetic field within them
is said to be “frozen into the fluid” meaning that any field line that passes through a given
fluid element is trapped in that fluid element and moves and deforms with it.

Magnetic flux must be conserved during collapse

Φ =

∫
S

B · dA , (24)

where A is the surface area. Assuming a sphere, A = 4πR2 and we therefore have

B4πR2
i = B4πR2

f (25)

Bns = Bi

(
Ri

Rns

)2

, (26)

which is the same factor as we had previously. The magnetic field must also increase ∼ 104

times.

1There is some disagreement on this point! But the derivation is nice and seems to give the right answer
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NS Temperatures

NS are hot! They begin their lives at ∼ 1011 K and like WDs cool slowly as they age. Using
this temperature and a radius of ∼ 10 km, Stephan-Boltzmann gives L = 1026W, which is
similar to that of the Sun. From Wien’s law, the peak is near 3 cm, in the X-ray regime.

Pulsars!

Neutron stars emit radiation, and this radiation can be beamed toward us. In such cases, we
get one “pulse” of radiation each rotation. Such objects are called “pulsars.” Pulsars were
first detected by Joclyn Bell, then a grad student, and her advisor Anthony Hewish in 1967.
She noticed a “scruff’ in her chart record that had a regular period. She initially thought
it may be from aliens, but after finding more sources of scruff, she realized that there were
many such pulsars in the sky, and the alien hypothesis was not likely. This discovery led to
a nobel prize (for Hewish :( ).

There are a few thousand pulsars known, and the next generation of radio telescopes will
undoubtedly find many multiples more (FAST in China is finding tons). Pulsars have periods
ranging from seconds to milliseconds. Because they are so regular in their pulses, we can
accurately measure their periods, and also period derivatives Ṗ . Pulsar lifetimes can be
expressed as P/Ṗ - a characteristic value is 107 − 108 years.

Pulsars generally have periods of between 0.25 and 2 s, with Ṗ on the order of 10−15 s.

How do we know that pulsars are small? Let’s balance centripetal acceleration with gravity.
If centripetal acceleration were larger than the gravitational acceleration, the object would
fly apart.

ω2R = G
M

R2
(27)

Since P = 2πω, this expression solves to

P = 2π

√
R3

GM
. (28)

or

R =

(
P 2GM

4π2

)1/3

. (29)

If we take P = 1 s, I findR =≃ 104 km. The fastest pulsars, however, rotate with P ≃ 0.001 s,
which gives ∼ 100 km, which is way too small for a WD.

Three distinct classes of pulsars are currently known to astronomers, according to the source
of the power of the electromagnetic radiation:

• rotation-powered pulsars, where the loss of rotational energy of the star provides the
power,
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Figure 3: The P − Ṗ diagram for pulsars.

• accretion-powered pulsars (accounting for most but not all X-ray pulsars), where the
gravitational potential energy of accreted matter is the power source (producing X-rays
that are observable from the Earth),

• magnetars, where the decay of an extremely strong magnetic field provides the elec-
tromagnetic power.

For rotation-powered pulsars we can calculate the rate of energy loss. The rotational energy
is:

K = 1/2Iω2 =
2π2I

P 2
(30)

and therefore energy is lost as
dK

dt
= −4π2IṖ

P 3
(31)

The term −dK/dt is the luminosity. If we assume P = 1 s, Ṗ = 10−15 s, and I = 2/5MR2 =
2/5× 1 M⊙ × (10 km)2, I get 3× 1024W.

Pulsar emission is still poorly understood, although we have plenty of theories. The radiation
does imply an increase in spin period though, and a positive value of Ṗ . When a pulsar’s
spin period slows down sufficiently, the radio pulsar mechanism is believed to turn off (the
so-called ”death line”). This turn-off seems to take place after about 10-100 million years,
which means of all the neutron stars born in the 13.6-billion-year age of the universe, around
99% no longer pulsate.

Given the dispersion relation
ω2 = k2c2 + ω2

p. (32)
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where the angular plasma frequency is

ω2
p ≡ 4πnee

2

me

(33)

The plasma frequency is related to the electron density as

νp =
ωp

2π
≈ 8.979 kHz

( ne

cm−3

)1/2
. (34)

The propagation speed is given by the group velocity

vg ≡
∂ω

∂k
=

∂

∂k
ω (35)

=
∂

∂k

(
k2c2 + ω2

p

)1/2
(36)

=
�2kc2

�2
(
k2c2 + ω2

p

)1/2 (37)

= �
�
�1

c

(
ω2 − ω2

p

)1/2
c�2

ω
(38)

= c

(
1−

ω2
p

ω2

)1/2

(39)

= c

(
1−

ν2
p

ν2

)1/2

(40)

≡ cµ (41)

where µ ≤ 1 is the index of refraction. Below the plasma frequency, µ is imaginary and the
waves cannot propagate. For the ionosphere, the electron density peaks at about 106 cm−3

and so the plasma frequency is about 9 MHz. In the ISM, for ne ∼ 0.1 cm−3, the plasma
frequency is about 3 kHz.

Dispersive Time Delay

The total propagation time as a function of path length through the medium is

ttotal =

∫ D

0

dl

vg
(42)

=

∫ D

0

dl

c

(
1−

ν2
p

ν2

)−1/2

(43)

≈
∫ D

0

dl

c

(
1 +

ν2
p

2ν2

)
(44)

=

∫ D

0

dl

c
+

∫ D

0

dl

c

ν2
p

2ν2
(45)

=
D

c
+

e2

2πmec

∫ D

0
ne(l)dl

ν2
(46)

= tgeometric + tdispersive. (47)
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where in the last step we broke up the total time into the geometric travel time and the
dispersive delay. Therefore,

tdispersive =
e2

2πmec

∫ D

0
ne(l)dl

ν2
(48)

≡ K
DM

ν2
(49)

≈ 4.149 ms

(
DM

pc cm−3

)( ν

GHz

)−2

(50)

where DM ≡
∫ D

0
ne(l)dl is the dispersion measure andK ≡ e2

2πmec
≈ 4.149 ms GHz2 pc−1 cm3

is the dispersion constant.

Pulsar Utility

Pulsars have proven themselves to be incredibly useful objects for for studying the interstellar
medium and for testing concepts in physics.

The radiation from pulsars passes through the interstellar medium (ISM) before reaching
Earth. Free electrons in the warm (8000 K), ionized component of the ISM and H II regions
affect the radiation in by introducing a frequency-depending delay in the pulse arrival times.

Because of the dispersive nature of the interstellar plasma, lower-frequency radio waves travel
through the medium slower than higher-frequency radio waves. The resulting delay in the
arrival of pulses at a range of frequencies is directly measurable as the dispersion measure
of the pulsar. The dispersion measure is the total column density of free electrons between
the observer and the pulsar:

DM =

∫
nedℓ (51)

where ne is the electron density of the ISM and the integration is along the path. The
dispersion measure is used to construct models of the free electron distribution in the Milky
Way.

Pulsars have also been used to detect the so-called stochastic background of gravitational
waves. This signal is produced from the combined effects of all supermassive black holes in the
Universe. There are 3 consortia around the world which use pulsars to search for gravitational
waves. In Europe, there is the European Pulsar Timing Array (EPTA); there is the Parkes
Pulsar Timing Array (PPTA) in Australia; and there is the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) in Canada and the US. Together, the
consortia form the International Pulsar Timing Array (IPTA). The pulses from Millisecond
Pulsars (MSPs) are used as a system of Galactic clocks. Disturbances in the clocks will be
measurable at Earth. A disturbance from a passing gravitational wave will have a particular
signature across the ensemble of pulsars, and will be thus detected. NANOGrav just reported
a detection of the gravitational wave background!
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GR and Black Holes

C+O Chapter 17

The final endpoint of stellar evolution for us to discuss is black holes, which are the products
of the most massive stars created. The treatment of black holes necessitates a discussion of
general relativity, GR.

GR

In 1915, Einstein published his new theory of gravity, General Relativity (GR). At the time,
Newtonian gravity was well-accepted, but there were hints that other physics remained
unaccounted for. Foremost was the orbit of Mercury, for which the perihelion location
(furthest distance from the Sun) shifts in a manner that cannot be explained by Newtonian
gravity. Einstein in 1905 published his theory of special relativity, which reconciles Newton’s
laws of motion with electrodynamics. A new theory was needed to update gravity.

Equivalence principle

Special relativity tells us that the laws of physics are the same in all inertial reference frames.
What is an inertial reference frame? A frame that is not accelerating! But, since gravity
is an acceleration, and everything acts under the influence of gravity, can we really have
inertial frames? We know that we do have inertial frames, so although gravity causes an
acceleration, it must be different.

An observer in an accelerated reference frame must introduce what physicists call fictitious
forces to account for the acceleration experienced by himself and objects around him. One
example is the force pressing the driver of an accelerating car into his or her seat; another
is the force you can feel pulling your arms up and out if you attempt to spin around like a
top. Einstein’s insight was that the pull of the Earth’s gravitational field is fundamentally
the same as these fictitious forces. The apparent magnitude of the fictitious forces always
appears to be proportional to the mass of any object on which they act - for instance, the
driver’s seat exerts just enough force to accelerate the driver at the same rate as the car. By
analogy, Einstein proposed that an object in a gravitational field should feel a gravitational
force proportional to its mass, as embodied in Newton’s law of gravitation.

A person in a free-falling elevator experiences weightlessness; objects either float motionless
or drift at constant speed. Since everything in the elevator is falling together, no gravita-
tional effect can be observed. In this way, the experiences of an observer in free fall are
indistinguishable from those of an observer in deep space, far from any significant source
of gravity. Such observers are the privileged (“inertial”) observers Einstein described in his
theory of special relativity: observers for whom light travels along straight lines at constant
speed.

Gravity behaves differently. Einstein realized that if everyone were in a state of free-fall, we
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would have no method of knowing it! Also, since each spatial location feels a different force
of gravity, it cannot be fully eliminated. Instead, Einstein proposed “local” reference frames
where the acceleration due to gravity is essentially constant, which is known as the “Principle
of Equivalence:” all local, free-falling nonrotating laboratories are fully equivalent for the
performance of all physical experiments. Roughly speaking, the “equivalence principle”
states that a person in a free-falling elevator cannot tell that they are in free fall.

We can see how odd this is by equating Newton’s second law with the gravitational force:

ma =
GMm

r2
(52)

But the LHS shows an object’s resistance to acceleration (its “inertial” mass) and the RHS
gives the gravitational force, with m and M being the “gravitational charges.” By why
would these two masses be the same? Think of the situation for EM:

ma =
qQ

4πϵ0r2
. (53)

Strictly, we should change our nomenclature

mia =
GMgmg

r2
(54)

Experiments have shown that mi/mg is unity to within one part in 1012. This is known as
the “weak equivalence principle.”

Curved Light

Let’s do another thought experiment! Imagine you have suspended a laboratory high above
the earth. From one side of the lab you shoot a photon horizontal to the ground while at
the same time releasing the lab so it is in free-fall. In the reference frame of the lab, the
photon must maintain its horizontal displacement. An observer located on earth, however,
would see the photon’s path bend downward toward the Earth as the lab fell.

This deflection is minor, but measurable. The deflection of the photon is the quickest path
to the other side of the lab, and evidence for curved spacetime.
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(55)

Redshift

Redshift is a concept in astrophysics that describes the shifting of the frequency of light. We
can define the redshift z as

z =
∆λ

λ0

=
∆ν

ν0
. (56)

This is the definition, but we can relate it to the relative velocity via the Doppler effect:

z =

√
1 + vr/c

1− vr/c
− 1 (57)

As long as vr ≪ c, we can make the expression

(1 + vr/c)
±1/2 ≃ 1± vr

2c
, (58)

so for nonrelativistic motions

z =
∆λ

λ0

≃ vr
c

(59)

By convention, we call decreases in wavelength (increases in frequency) blueshifts, for when
the source of radiation is moving toward the observer. We call increases in wavelength
(decreases in frequency) redshifts, for when the source of radiation is moving away from the
observer.
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Gravitational Redshift and Time Dilation

Let’s again suspend a lab above the ground and cut the cable holding it just as we release a
photon. This time, let’s release the photon straight up from the lab’s floor. Again, observers
in the lab would not sense anything different with regards to the photon’s motion.

From an external perspective, if the lab fell by distance h during the photon’s travel, the
ceiling is h closer to the photon than it was at the beginning. We would expect to measure
a blueshift

∆ν

ν0
=

v

c
=

gh

c2
. (60)

But we know that such a shift is not measured. There must be something to oppose it,
a “gravitational redshift” that applies when viewing accelerated frames. These frames can
simply be due to gravity. Gravitational redshift is given by

∆ν

ν0
= −v

c
= −gh

c2
. (61)

(62)

The total gravitational redshift is given by integrating Equation 61 from r0 to infinity. We
must use g = GM/r2 and set h = dr. A word of caution on this integration: the integration
adds up contributions from different reference frames, but Equation 61 was derived from a
local reference frame. The integration is only valid if spacetime is relatively flat.
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∫ ν∞

ν0

dν

ν
≃ −

∫ ∞

r0

GM

r2c2
dr , (63)

which results in

ln

(
ν∞
ν0

)
≃ −GM

r0c2
(64)

which is valid for relatively weak gravity and can be rewritten as

ν∞
ν0

≃ e−GM/r0c2 . (65)

e−x ≃ 1− x if x ≪ 1 so
ν∞
ν0

≃ 1− GM

r0c2
(66)

A more accurate derivation gives us

ν∞
ν0

≃
(
1− 2GM

r0c2

)1/2

. (67)

Let’s put things in terms of redshift z:

z =
∆ν

ν0
=

ν0
ν∞

− 1 (68)

=

(
1− 2GM

r0c2

)−1/2

− 1 (69)

≃ GM

r0c2
(70)

Intervals and Geodesics

The heart of GR is Einstein’s field equations. The derivation and application of these
equations is beyond the scope of this course (and way beyond my understanding!). These
equations relate the effect of mass (and energy!) on the curvature of spacetime. This is the
basic tenet of GR: mass and energy curve spacetime.

Spacetime diagrams can help us to get an intuitive feel for these equations. The axes of
spacetime diagrams can vary, but all have a measure of position on (at least) one axis
and time, or ct on the other. On these diagrams, worldlines show the path of an object:
straight up for stationary objects, diagonal for constant velocity, more complicated for more
complicated motion (but always moving upwards).

Light obviously moves at a constant velocity, and so should move as a straight line in a
spacetime diagram. We can define a “lightcone” emanating from a single point in spacetime
that gives all possible spacetime paths for a photon. Running time backwards gives all past
possible paths. This leaves wide areas of spacetime that are not accessible! The finite speed
of light means that not all of spacetime is accessible.
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Figure 4: Worldlines!

Figure 5: Light cones for photons.
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Spacetime Intervals

We need to define a spacetime “distance.” For cartesian distances of points specified as
(x1, y1, z1) and (x2, y2, z2):

(∆ℓ)2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (71)

But in spacetime we have one more dimension, leading to (xA, yA, zA, tA) and (xB, yB, zB, tB):

(∆s)2 = [c(tB − ta)]
2 − (xB − xA)

2 − (yB − yA)
2 − (zB − zA)

2 , (72)

or the squared interval is the distance traveled by light squared minus the distance between
events squared.

Note that (∆s)2 can be positive, negative, or zero. If positive, the interval is timelike and
light has enough time to travel between events A and B. We can then choose an inertial
reference frame such that A and B happen at the same spatial location. Because the two
events occur at the same place, the time measured between the two events is ∆s/c. By
definition, the time between the two events that occur at the same location is the proper
time

∆τ =
∆s

c
(73)

The proper time is the elapsed time recorded by a watch moving along the worldline from
A to B.

If (∆s)2 = 0, we call it lightlike or “null.” In this case, only light can go from A to B.

If (∆s)2 < 0, the interval is spacelike and light cannot make the travel. Thus, nothing can
make the travel. The lack of simultaneity in this situation means that there are inertial
frames in which the time-ordering of the events is reversed, or where they occur at the same
time. In the frame where the two events occur at the same time, we can define a proper
distance:

∆L =
√
−(∆s)2 . (74)

If a straight rod were connected between A and B, this would be the rest length of the rod.

We can define a “metric” as the differential distance along any (possibly curved) path:

(dℓ)2 = (dx)2 + (dy)2 + (dz)2 (75)

Light will always follow the shortest possible path, but this need not be a straight line. We
can integrate the above equation to find ∆ℓ.

Two events can be connected by infinitely many curved worldlines. We can then define a
metric for flat spacetime:

(ds)2 = (cdt)2 − (dℓ)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (76)

As before, we can integrate this to find the total interval.

In flat spacetime, a straight timelike worldline between two events is a maximum; any other
wordline between the same two events will not be straight and will have a smaller interval.
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Geodesics

In a non-flat spacetime (one with mass), the straightest possible worldlines are curved. These
are called “geodesics.” The paths followed by freely falling objects are geodesics.

In curved spacetime, a geodesic is an extremum. For this chapter, the geodesics we will
encounter are maxima.

Our overall goal here is to describe spacetime around a massive, spherical object. For this
application, spherical coordinates are more useful:

(dℓ)2 = (dr)2 + (rdθ)2 + (r sin θdϕ)2 (77)

(ds)2 = (cdt)2 − (dr)2 − (rdθ)2 − (r sin θdϕ)2 , (78)

where the above expression is for flat spacetime. We need one that includes curvature. Note
that the coordinates used here are those of an observer at rest a great (∼ infinite) distance
from the origin.

The derivation of the curved spacetime metric is way beyond the scope of this course. Karl
Schwartzschild first solved Einstein’s equations to get

(ds)2 =
(
cdt
√

1− 2GM/rc2
)2

−

(
dr√

1− 2GM/rc2

)2

− (rdθ)2 − (r sin θdϕ)2 , (79)

Although the derivation of the Schwartzschild metric is beyond our reach, we can see that it
has the expected properties. If we set dt = 0, a distance along a radial line (with dθ = dϕ = 0)
is the proper distance:

dL =
√

−(ds)2 =
dr√

1− 2GM/rc2
. (80)

This tells us that the spatial distance dL is greater than the coordinate difference dr. This is
the stretching of spacetime around massive objects. We can do the same thing with proper
time when r is unchanging:

dτ =
ds

c
= dt

√
1− 2GM

rc2
. (81)

Since dτ < dt, time passes more slowly close to a massive object, as measured by an external
observer.

The Orbit of a Satellite

Mass tells spacetime how to curve and spacetime tells mass how to move. Masses will follow
the straightest possible worldline.

Let’s say the satellite travels with ω = v/r entirely in the ϕ̂ direction, so dr = dθ = 0 and
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dϕ = ωdt. We can input these into the Schwartzschild metric to find

(ds)2 =

[(
cdt
√

1− 2GM/rc2
)2

− r2ω2

]
dt2 (82)

=

(
c2 − 2GM

c
− r2ω2

)
dt2 (83)

We can integrate this expression over one orbit to get

∆s =

∫ 2πω

0

√
c2 − 2GM

r
− r2ω2 dt (84)

The worldline must have a radial derivative of zero, so

d

dr
(∆s) =

d

dr

∫ 2πω

0

√
c2 − 2GM

r
− r2ω2 dt = 0 (85)

d

dr

√
c2 − 2GM

r
− r2ω2dt (86)

2GM

r2
− 2r2ω2 = 0 (87)

v = rω =

√
2GM

r
(88)

This is the coordinate speed of the satellite for a circular orbit (the speed measured by a
distant observer). Note that this is exactly what Newtonian gravity would predict!

The Schwartzschild Radius

You can compute the Schwartzschild radius RS by equating the kinetic and potential energy
of a photon. This (incorrect) derivation for the event horizon nevertheless gets the correct
answer. We can prove this by taking a null worldline, ds = 0 for a photon falling straight
into a black hole. Such a photon has dθ = dϕ = 0, so

dr

dt
= c

(
1− 2GM

rc2

)
= c

(
1− RS

r

)
. (89)

We see that the coordinate speed equals c at great distance, but as r → RS, dr/dt → 0. We
cannot get light inside the Schwartzschild radius. This is also called the “event horizon.”
Interior to this is the “singularity.” Light is frozen at the event horizon. In fact the collapse
of the star is frozen there too! We cannot see it because photons are trapped, but if they
weren’t we would see time standing still.

A Trip into a Black Hole

What happens as one falls into a black hole? Assume you take a trip to a black hole while
shining a flashlight backwards from your direction of travel. Light from that flashlight will
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be more and more redshifted to an external observer as you call in. It will also grow dimmer
to this same observer as time dilation increases the time between photons. But to you, all
is well, at least for a while! Eventually, the gravitational force on your feet is much greater
than that on your head (a tidal force). This is bad. You are eventually stretched out like
spaghetti.

Hawking Radiation

It may feel like black holes are impossible forces, given that they are the end point of
many stars’ evolutionary paths. Stephen Hawking discovered, however, that black holes do
“‘evaporate” over long timescales. We know from quantum mechanics that the quantum
world is filled with particles popping in an out of existence. This produces pairs of particles
and their anti-equivalents. When these pairs recombine, they annihilate and all is well. Near
a black hole however, one of the particles may fall into the event horizon, and the other may
escape the system. This carries energy away from the black hole, leading to its evaporation.

The timescale is really long here!

tevap = 2650π2

(
2GM

c2

)2(
M

M⊙

)
≈ 2× 1067

(
M

M⊙

)
yr . (90)

So normal black holes take a long time! Smaller black holes formed in the big bang primordial
may be as small as 10−8 kg according to the Big Orange book, and so will be faster. But we
aren’t sure they exist....

Supernovae

A supernova is one of the most energetic events in the universe. The energy comes from
the explosion of a star, but there are actually two main types: the explosion of a high-mass
star at the end of its life and the explosion of a ∼ Solar mass white dwarf after accreting
matter from a companion. We will cover the latter scenario when we deal with binaries. A
SN leaves behind a neutron star or a black hole.

Famous SN

Compared to a star’s entire history, a supernova is very brief (the explosion itself takes
∼minutes; the bright afterglow is visible for perhaps only a couple months).

From Wikipedia:

• The earliest possible recorded supernova, known as HB9, could have been viewed by
unknown prehistoric people of the Indian subcontinent and then recorded on a rock
carving, since found in Burzahama region in Kashmir and dated to 4500± 1000 BC.

• Later, SN 185 was documented by Chinese astronomers in AD 185.
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• The brightest recorded supernova was SN 1006, which occurred in AD 1006 in the
constellation of Lupus. This event was described by observers in China, Japan, Iraq,
Egypt, and Europe.

• The widely observed supernova SN 1054 produced the Crab Nebula.

• Supernovae SN 1572 and SN 1604, the latest Milky Way supernovae to be observed
with the naked eye, had a notable influence on the development of astronomy in Europe
because they were used to argue against the Aristotelian idea that the universe beyond
the Moon and planets was static and unchanging Johannes Kepler began observing SN
1604 at its peak on 17 October 1604, and continued to make estimates of its brightness
until it faded from naked eye view a year later. It was the second supernova to be
observed in a generation, after Tycho Brahe observed SN 1572 in Cassiopeia.

• There is some evidence that the youngest Galactic supernova, G1.9+0.3, occurred in
the late 19th century, considerably more recently than Cassiopeia A from around 1680.
Neither supernova was noted at the time. In the case of G1.9+0.3, high extinction from
dust along the plane of our galaxy could have dimmed the event sufficiently for it to go
unnoticed. The situation for Cassiopeia A is less clear; infrared light echos have been
detected showing that it was not in a region of especially high extinction.

• The most famous SNR, however, is SN 1987A in the Large Magellanic Cloud. This SN
went off in 1987 (thus the name) and is only 50 kpc distant. We have been observing it
ever since. The progenitor was a blue supergiant. https://www.nasa.gov/feature/goddard/2017/the-
dawn-of-a-new-era-for-supernova-1987a

We also detect SN in other galaxies, and these have proven key to our understanding of the
Universe (most on this next semester if you take ASTR368).

Types of SN

Just like many things in astronomy, the designations of SNe are based on observed charac-
teristics, and we later determined that this scheme was not intuitive. Oh well.

We have two primary tools for classifying SNs: light curves and spectra. Light curves are
just the intensity as a function of time. Spectra can tell you which elements are in the SN
explosion.

Type I SN have no H in their spectra. Type II do. The lack of H indicates that Type I SN
come from stars that lack H envelopes.

Type Ia have strong Si II lines at 615 nm.
Type Ib SN have He lines.
Type Ic do not have Si or He lines.

Type I SN have light curves that reach maximum a few days after explosion. After maximum,
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Figure 6: SN spectra and light curves.

they decline in brightness rapidly for 20 days, then decline slower for 50 days.

The lightcurves of Type II SNs are similar to those of Type Is, although Type II-Ps “plateau”
and Type II-Ls are linear.

Confusingly, Type 1a are from white dwarfs. All others are core collapse of massive stars.

Runaway Fusion

A white dwarf star may accumulate sufficient material from a stellar companion to raise
its core temperature enough to ignite carbon fusion, at which point it undergoes runaway
nuclear fusion, completely disrupting it. There are three avenues by which this detonation
is theorised to happen: stable accretion of material from a companion, the collision of two
white dwarfs, or accretion that causes ignition in a shell that then ignites the core. The
dominant mechanism by which type Ia supernovae are produced remains unclear. Despite
this uncertainty in how type Ia supernovae are produced, type Ia supernovae have very
uniform properties and are useful standard candles over intergalactic distances.

Core-Collapse SN

A typical Type II SN releases 1053 erg (1046 J) of energy. Interestingly, only about 1% of this
goes into the energy of the ejected material, and 0.01% is released as photons. How does the
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Figure 7: SN decision tree.

rest of the energy get out? Neutrinos!

As an interesting aside, SN1987A was first detected in neutrinos, before any photons from the
explosion. This neutrino burst took place over 12.5 seconds. How could this have happened?
The neutrinos travel at essentially the speed of light. The light was impeded by the dense
shell around the progenitor, and therefore we had to wait until the shell became optically
thin.

An iron core cannot release energy via fusion. In extremely high temperatures, iron can
be gotten rid of through photodisinegration. This process strips iron down into protons
and neutrons, and in the process absorbs energy in the form of photons. This is bad for
the stability of the star. Furthermore, the protons themselves can capture electrons in the
nearly 1010 K core, leading to the creation of neutrons and neutrinos:

p+ + e− → n+ νe . (91)

This releases tremendous energy.

Because of these endothermic reactions, and because the electrons are removed during elec-
tron capture, the star loses its support and rapidly collapses. During collapse, the outer
layers are falling slower than the inner ones (τ ∝ ρ−0.5), and when the collapse is progressing
at the sound speed, the inner core decouples from the outer core. The outer core is now in
free fall, suspended above a more rapidly collapsing (mostly iron) core. This probably won’t
end well.

The core has blown through its electron degeneracy pressure, but neutron degeneracy can
resist the freefall (neutrons are also fermions, and obey the Pauli exclusion principle). The
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core rebounds slightly, and this sets up a shock wave. The details of what happens next
depend on the model, but in essence the shock wave must travel outwards to the stellar
surface, blowing those layers into the local medium.

What is left behind depends on the mass of the star. The most massive stars will become
black holes, whereas less massive ones will become neutron stars. Your book notes that the
cutoff mass is about 25 M⊙.

Radioactive Decay

The chaotic fusion processes in the last few moments of a star’s life lead to the creation
of numerous radioactive isotopes. Your book notes 57

27Co and 44
22Ti, for example. Many of

these decay through beta decay, releasing an electron, a neutrino electron, and radiation.
These elements provide clocks that astronomers can use, since the decay will proceed as an
exponential decay:

N(t) = N−0e
−λt (92)

Nucleosynthesis within SNe

SNe also create elements and this is how the Universe can make all elements more massive
than iron (neutron star collisions may also play a large role).

Fusion reactions are impeded by the high Coulomb barrier, but neutrons can penetrate this
barrier and hence initiate fusion reactions. For example:

A
ZX + n →A+1

Z X + γ . (93)

If beta decay is slow compared to neutron capture this is called the rapid or “r-process.”
If the decay is fast compared to neutron capture, it’s called the slow or “s-process.” We
can have s-process during normal stellar evolution, but r-process can only occur in a SN
when large neutrino fluxes exist. The end result of the s- and r-processes is neutron-enriched
elements.

Gamma Ray Bursts

Gamma-ray bursts (GRBs) are extremely energetic explosions that have been observed in
distant galaxies. They are the brightest electromagnetic events known to occur in the uni-
verse. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma
rays, a longer-lived “afterglow” is usually emitted at longer wavelengths (X-ray, ultraviolet,
optical, infrared, microwave and radio).

The intense radiation of most observed GRBs is thought to be released during a supernova
or superluminous supernova as a high-mass star implodes to form a neutron star or a black
hole. A subclass of GRBs (the “short” bursts) appear to originate from the merger of binary
neutron stars.
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The sources of most GRBs are billions of light years away from Earth, implying that the
explosions are both extremely energetic (a typical burst releases as much energy in a few
seconds as the Sun will in its entire 10-billion-year lifetime) and extremely rare (a few per
galaxy per million years). All observed GRBs have originated from outside the Milky Way. It
has been hypothesized that a gamma-ray burst in the Milky Way, pointing directly towards
the Earth, could cause a mass extinction event.

GRBs were first detected in 1967 by the Vela satellites, which had been designed to detect
covert nuclear weapons tests; this was declassified and published in 1973. In 1997 the first
X-ray and optical afterglows were detected from a GRB and direct measurement of their
redshifts using optical spectroscopy, and thus their distances and energy outputs. These
discoveries, and subsequent studies of the galaxies and supernovae associated with the bursts,
clarified the distance and luminosity of GRBs, definitively placing them in distant galaxies.

Cosmic Rays

SN also produce cosmic rays, charged particles that travel through space at incredible
speeds.The Sun also produces cosmic rays, although Solar cosmic rays particles are com-
parably low energy.

Because they are charged, cosmic rays interact with magnetic fields.

Cosmic rays are responsible for heating in the interstellar medium. If fact, they are the only
source of heating that can penetrate dense molecular clouds.

Cosmic rays are a serious impediment to long-distance human travel. The Earth is sur-
rounded by its magnetic field, which diverts cosmic rays around it. Once astronauts leave
this protected region, they can be exposed to cosmic rays, which can damage their internal
organs.

1 Shocks! (Draine Ch. 35+36) and Supernovae

The folowing notes are adapted from my ISM course. They use the textbook by Bruce
Draine.

Shocks are created when a flow moves faster than the local sound speed. What can do this?
–novae and supernovae
–fast stellar winds
–expanding H II regions
–gas falling into the potential of spiral arms
–colliding interstellar clouds
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1.1 The Sound Speed

What is the sound speed? In an unmagnetized gas,

cs =

(
γP

ρ

)0.5

, (94)

where γ is the adiabatic index. γ takes values of γ = 5/3 for ideal monotonic gas, γ = 7/5
for diatomic gas. Partially ionized gas can take values between these two extremes, but fully
ionized gas has γ = 5/3. We almost always assume an ideal gas, so P = nkT and therefore

cs =

(
γkT

µmH

)0.5

, (95)

where µ is again the mean particle mass. Let’s compute cs for the various phases of the ISM!

For magnetized gas, we add in the magnetic pressure PB = B2/4π so

cms =

(
γP

ρ
+

B2

4πρ

)0.5

, (96)

where cms is the magnetosonic speed.

The ratio of the speed of the flow to the speed of sound in the gas is the Mach number in
honor of Ernst Mach, a late 19th century physicist who studied gas dynamics. “Subsonic”
conditions occur for Mach numbers less than one, M < 1. As the speed of the object
approaches the speed of sound, the Mach number is nearly equal to one, M ≃ 1, and the
flow is said to be “transonic.” Supersonic conditions occur for Mach numbers greater than
one, M > 1. Sometimes, you may hear “hypersonic,” which is M > 5.

A shock separates M = 0 (the ambient medium) from M > 1. The shock dissipates heat,
and therefore due to the entropy generation it is irreversible.

2 The Fluid Equations

The ISM is a fluid, and so we must treat its physics using the fluid equations. Fluid mechan-
ics in the ISM have three main useful equations: the continuity equation, the momentum
equation, and the energy equation. These are collectively known as the “conservation equa-
tions,” or sometimes simply as the “fluid equations.” The names clue us in to the quantity
that is conserved. We will eventually add in a fourth equation from Maxwell’s Laws.

2.1 Mass Conservation

The (mass) continuity equation conserves mass. Assume we have some comoving volume Ω(t)
(apologies, I’m following Draine’s notation here). From mass conservation, ρΩ = constant.
Therefore,

∂

∂t
(ρΩ) = ρ

∂Ω

∂t
+ Ω

∂ρ

∂t
= 0 . (97)
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We can solve this to find
∂ρ

∂t
+∇ · (ρv⃗) = 0 . (98)

This equation is telling us that the change in density with time (the first term) must be
balanced by the divergence in the quantity ρv⃗, which is the mass flux. Any change in
density must be balanced by a changing mass flow rate - either changing the flow speed or
the flow density.

2.2 Conservation of Momentum

The momentum equation conserves momentum (duh!), and is another way of stating F =
ma. Again, let’s consider only one dimension. What forces are acting on the fluid? First,
there are “body forces” that act at a distance: the electric, magnetic, and gravitational
fields. Second there are “surface forces:” the pressure acting on the surface and the shear
force.

We can write ma⃗ as ρΩ ∂
∂t
v⃗ and then equate that to all forces in the system:

ρΩ
∂

∂t
v⃗ = F⃗pressure + F⃗EM + F⃗gravity + F⃗viscosity (99)

If we have some surface element dS⃗ outward. Then, the external fluid presses inward so that
the net pressure on the fluid is

F⃗pressure =

∫
(−PdS) =

∫
−∇PdΩ , (100)

and by Gauss’s theorem,
F⃗pressure = −Ω∇P . (101)

For gravity,
F⃗gravity = (ρΩ)(−∇Φgravity) = ρΩg, . (102)

This is Poisson’s law, albeit in a form that is probably a bit unfamiliar.

Putting it all together, after the derivation of F⃗EM (which is a little involved) and the viscosity
(a little confusing, but we’ll ignore it later anyway), we find

ρ
Dv⃗

Dt
= −∇

(
P +

B2

8π

)
+

1

4π
(B⃗ · ∇)B⃗ − ρg + x̂i

∂

∂xj

σij , (103)

where the term x̂i
∂

∂xj
σij is the viscosity, which we will ignore.

A simplified form of Equation 103 is the case when B⃗ = 0 and g = 0. This is then known as
a “Navier-Stokes” equation.
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2.3 Conservation of Energy

Conservation of energy is more complicated. The mechanical power or mechanical work
(dE/dt) is just the pressure times the change in volume. The change in volume is just
dV = dSv. Thus, we can integrate the momentum equation over the surface times v to find
the mechanical work.

There is also heating work, which is the difference of the heating Γ and the cooling Λ.

Draine derives the expression, but it’s ugly and doesn’t need to be reproduced here.

3 The Rankine-Huginot “Jump” Conditions

Now that we have our fluid equations, we can look at the physics of shocks. We are going
to be in the frame of the shock. Although the shock is propagating into the ISM, the shock
frame is stationary.

If there is a discontinuity (a shock) the mass, momentum, and energy must be conserved. We
can therefore set up pre- and post-shock conditions, called the “Rankine-Huginot” conditions.

We are going to be making two simplifications: first, that the flow is “steady,” so that
∂/∂t = 0; second, that the shock is “plane-parallel” so that the flow is entirely in x̂ (∂/∂y =
∂/∂z = 0). Finally, we further assume that there is a “single species,” so the flow of all
particles has the same velocity.

3.1 Conservation of Mass

If the flow is constant or “steady,” ∂ρ/∂t = 0. If the flow is in one dimension, we can then
write:

ρv⃗ = constant . (104)

The mass flux is a conserved quantity.

3.2 Conservation of Momentum

We can integrate Equation 103 and simplify it using the mass conservation equation and
ignoring viscous forces arrive at

ρv2x + P +
B2

y +B2
z

8π
= constant , (105)

where ρv2 is the “ram pressure,” or the pressure exerted by a flow, and
B2

y+B2
z

8π
= 1

8π
B2

⊥ is
the magnetic pressure perpendicular to the flow.

28



3.3 Conservation of Energy

Ignoring viscosity again, the energy conservation equation reduces to[
ρv2

2
+

γP

(γ − 1)

]
vx +

B2
y +B2

z

8π
vx −

ByBx +BzBx

4π
vx − κ

dT

dx
= constant , (106)

where κdT
dx

refers to the heating and cooling.

In the case of Bx = 0 and κdT
dx

= 0 (no thermal conductivity), we find

ρv3

2
+

γP

(γ − 1)
v +

vB2

8π
= constant . (107)

3.4 Conservation of Magnetic Flux

Although not from a fluid equation, we must also conserve magnetic flux. Maxwell tells us
for infinite electrical conductance:

∂B⃗

∂t
= ∇× (v⃗ × B⃗) . (108)

If ∂/∂t = ∂/∂x = ∂/∂z = 0, and Bx = 0 ,

vB = constant (109)

3.5 Solutions to the Jump Conditions

We can now put everything together to determine how our variables of interest change post-
shock. The quantity on the left hand side of the fluid equations must be the same pre and
post shock, so for instance a change in density must be compensated by a change in some
combination of velocity, pressure, or magnetic field strength. Let’s assume that we know or
can estimate the pre-shock quantities ρ1, P1, v1, and B1, where “1” refers to pre-shock gas
and we will use “2” for post-shock gas. We then have four equations and four unknowns.

We will follow the usual convention and replace vx with u, so in the shock reference frame
vs = u1. We can also define x ≡ ρ2/ρ1, so therefore from mass conservation u2 = vs/x and
from magnetic flux conservation B2 = xB1. The momentum and energy equations are then

ρ1v
2
2 + P1 +

B2
1

8π
=

ρ1v
2
2

x
+ P2 +

B2
1

8π
x2 (110)

1

2
ρ1v

3
s +

γ

γ − 1
P1vs +

B2
1

8π
vs =

1

2

ρ1v
3
s

x2
+

γ

γ − 1

P2vs
x

+
B2

1

8π
vsx (111)

One solution to these equations is the trivial one: ρ1 = ρ2, u1 = u2, P1 = P2, and B1 = B2.
But this is boring.
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We can solve the modified momentum equation for P2 and substitute into the modified
energy equation to eventually get a quadratic in x. Draine lists the solution then as

x =
2(γ + 1)

D +
√

D2 + 4(γ + 1)(2− γ)M−2
A

, (112)

where

D ≡ (γ − 1) + 2M−2 + γM−2
A (113)

M ≡ vs√
γP1/ρ1

(114)

MA ≡ vs
B1/

√
4πρ1

. (115)

M is again the Mach number and MA is the Alfven Mach number.

For a shock to exist, it must be supersonic, so vs > cms (Equation 96). We can then define
yet another Mach number:

M ≡ vs/cms , (116)

and this is the one that matters for a magnetized medium.

These equations don’t reduce to a nice form unless we have a “strong shock:” M ≫ 1. In
this case, D → (γ − 1), so

x → γ + 1

γ − 1
= 4 for γ = 5/3 . (117)

It also follows that

u2 →
γ − 1

γ + 1
vs =

1

4
vs for γ = 5/3 . (118)

If we then solve for the pressure P2 and assume the ideal gas law T2 = P2µ/ρ2k, then

T2 →
2(γ − 1)

(γ + 1)

µv2s
k

=
3

16

µv2s
k

for γ = 5/3 . (119)

Draine provides handy values for T2:

T2 ≈ 2890K

(
µ

1.273mH

)( vs
10 km s−1

)2
(120)

T2 ≈ 1.38× 107K

(
µ

0.609mH

)( vs
1000 km s−1

)2
, (121)

where µ = 1.273mH for H I and µ = 0.609mH for fully ionized gas.

We can see these effects graphically in Draine Figure 36.1, for an unmagnetized flow.

30



Figure 8: Draine figure 36.1 showing the structure of a nonmagnetic radiative shock with
M = 4. Our treatment so far has only concerned positions 1 and 2.
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4 Supernovae and the Three-Phase ISM

Supernovae (SNe) are super explosions of super stars at the end of their lifetimes. They are
one of the most energetic phenomena in the Universe, and have a large impact on driving
turbulence in the ISM. They are believed to be responsible for the acceleration of Galactic
cosmic rays and the creation of the HIM.

As a review: SN Type Ia are from white dwarf accretion past the Chadrasehkar limit of
∼ 1.4 M⊙. All other SN are from core-collapse, including the famous SN 1987A in the LMC.

Video of SN1987A:
https://www.youtube.com/watch?v=xigKhIfD Ko
https://en.wikipedia.org/wiki/SN 1987A#/media/File:SN1987a debris evolution animation time scaled.gif

A typical SN has an energy of E0 = 1051 erg (E51 = 1), although some Type II SNe have E0 =
1052 erg. The ejected mass (Mej) ranges from ∼ 1.4 M⊙ for Type I SNe, and ∼ 10− 20 M⊙
for Type II SNe.

We can understand SNe in terms of some very simple physics, and break things into three
distinct phases: free expansion,

4.1 Phase I: Free Expansion

The first phase of expansion, the expansion energy is significantly greater than the energy
contained in the local medium. For type II supernovae, the expansion initially moves into
the exterior parts of the star.

Let’s compare the ejecta energy with that of the explosion itself to see how fast this phase
is propagating into the ISM:

〈
v2ej
〉
=

(
2E0

Mej

)1/2

= 1.00× 104 km s−1 E
1/2
51

(
M⊙

Mej

)1/2

. (122)

This is obviously much greater than the local sound speed of a few km s−1, which leads to
a fast shock expanding into the ISM. Interior to the shock is the supernova remnant (SNR).
As long as the material swept up by the shock is much less than the mass of the stellar
ejecta, the expansion of the stellar ejecta proceeds at essentially a constant velocity equal to
the initial shock wave speed, typically of the order of 10,000 km s−1. This is known as the
“free expansion” phase and may last for approximately 200 years, at which point the shock
wave has swept up as much interstellar material as the initial stellar ejecta. The supernova
remnant at this time will be about 3 pc in radius.

Although the remnant is radiating thermal X-ray and synchrotron radiation across a broad
range of the electromagnetic spectrum (from radio to X-rays), the initial energy of the shock
wave will have diminished very little. Line emission from the radioactive isotopes generated
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Figure 9: Crab nebula in the optical, diagram of blast wave and reverse shock, Tycho’s SNR
at X-ray wavelengths.

in the supernovae contribute significantly to the total apparent brightness of the remnant in
the early years, but do not significantly affect the shock wave.
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4.2 Phase II: Sedov-Taylor: The BlastwaveTM

As the remnant sweeps up ambient mass equal to the mass of the stellar ejecta, the wave will
begin to slow and the remnant enters a phase known as adiabatic expansion, or the Sedov-
Taylor or blast wave phase. The internal energy of the shock continues to be very large
compared to radiation losses from thermal and synchrotron radiation, so the total energy
remains nearly constant. The rate of expansion is determined solely the initial energy of the
shock wave and the density of the interstellar medium.

As the density of the expanding ejecta drops (as T−3), the pressure of the shocked gas behind
the shock wave soon exceeds the thermal pressure in the ejecta. Because of this pressure
difference, a reverse shock is created. There are now two shock fronts. The original one
propagating outward is called the “blastwave” and the reverse shock propagating inward.
The reverse shock re-heats the material in the SNR. [For the interested reader: Can we
compute when the reverse shock is created?]

As the ejecta expands out from the star, it passes through the surrounding interstellar
medium, heating it from 107 to 108 K, sufficient to separate electrons from their atoms and
to generate thermal X-rays. The interstellar material is accelerated by the shock wave and
will be propelled away from the supernova site at somewhat less than the shock wave’s
initial velocity. This makes for a thin expanding shell around the supernova site encasing a
relatively low density interior.

This occurs at radius:

R1 =

(
3Mej

4πρ0

)1/3

, (123)

when

t1 ≈
R1

⟨v2ej⟩1/2
= 186 yr

(
Mej

M⊙

)5/6

E
−1/2
51 n

−1/3
0 (124)

For t ≥ t1, the reverse shock has already reached the center of the SNR, and the entire
SNR is hot. The remnant is still expanding due to the large pressure difference between the
ISM and the SNR. It is emitting, but this radiation is not cooling the remnant significantly
because the densities are low.

We can now approximate the expansion as a “point explosion” injecting energy E0 into the
uniform density ISM. We can neglect the finite mass of the ejecta (which is dwarfed by the
mass of the swept up material), the radiative losses of energy (which are small compared to
the energy of the system), and the pressure in the ambient medium (small compared to that
in the SNR).

Here Draine switches to a strange dimensional analysis method to arrive at a classic result.
We know that the shock radius Rs will expand at a rate dependent on the SN energy and
the mass of the ISM:

Rs = AEαρβtη , (125)
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where the explosion occurs at t = 0. From dimensional analysis:

Mass : 0 = α + β (126)

Length : 1 = 2α + 3β (127)

Time : 0 = −2α + η . (128)

The mass condition arises because energy and mass must be proportional. To get length
out, their exponents must differ only by a sign. The length condition arises because energy
has in its units length−2 and density as length−3; if α = −1, β = 1 to get length out of the
“equation.” Similarly, for the third condition, energy has in its units time−2, so if α = 1,
η = 2. These are not the final values though, just the proportions.

This leaves us with three equations and three unknowns. We can easily solve these to get
α = 1/5, β = −1/5, η = 2/5:

Rs = A

(
Et2

ρ0

)1/5

, (129)

where A = 1.15 from the exact solution. Neat! We can therefore rewrite our expansion
terms, after realizing that v2 ∝ T :

Rs = 1.52× 1019 cmE
1/5
51 n

−1/5
0 t

2/5
3 (130)

vs = 1950 km s−1E
1/5
51 n

−1/5
0 t

−3/5
3 (131)

Ts = 5.25× 107 KE
2/5
51 n

−2/5
0 t

−6/5
3 , (132)

Or, the radius grows slowly with time, the shock velocity decreases slowly with time, and
the temperature decreases with time.

Draine shows the formal Sedov-TailOr solution.

Draine mentions that the Sedov-Taylor solution is not too bad, although it does neglect some
dynamical effects.

4.3 Phase III: Snowplow phase: Escape from Sedov-Taylor: The
Reckoning: The Radiative Phase

[When does the Sedov-Taylor expansion phase end?] When radiative cooling becomes im-
portant. When temperatures cool to about 20, 000 K, ions and electrons begin recombining,
the SNR leaves the Sedov-Taylor expansion phase.

This is probably a good time to talk about the radiation. The SNR is ∼ 107K. How does
it radiate? X-rays and synchrotron primarily. Why not free-free? Well, there is free-free as
well, but the synchrotron emission is much stronger.

After the temperature cools, the hot recombined electrons emit UV line radiation. This
is much more efficient at cooling the remnant. For a cooling function Λ that has units of
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Figure 10: Sedov-Taylor expansion for γ = 5/3 [Draine 39.1].

erg s−1 cm−3, this gives
dE

dt
= −

∫ Rs

0

Λ4πr2 dr (133)

Draine mentions a functional form for Λ that leads to:

trad = 49.3× 103 yrE0.22
51 n−0.55

0 (134)

Rrad = 7.32× 1019 cmE0.29
51 (135)

When t ≈ trad, the thermal pressure behind the shock has dropped significantly due to
cooling. We call this the snowplow phase. There is now a dense shell of cool gas that is
enclosing a hot central volume. The snowplow here refers to the fact that the dense shell
mass is added to as the blastwave progresses outward.

The gas here is just cooling by adiabatic expansion. Adiabatic here just means that the gas
does not transfer heat to its surroundings (via radiation). Hence this new phase is known
as the radiative phase during which X-ray radiation becomes much less apparent and the
remnant cools and disperses into the surrounding medium over the course of the next 10000
years.

At the beginning of the snowplow phase, Draine notes that the shock speed is ∼ 150 km s−1.

36



Draine gives the relevant expressions for the snowplow phase:

Rs ≈ Rs(trad)

(
t

trad

)2/7

(136)

vs ≈
2

7

Rs

trad

(
t

trad

)−5/7

(137)

4.4 Phase IV: Fadeaway

The shock speed declines with time until it becomes just an ordinary sound wave. Using our
previous expressions, this occurs when

tfade ≈
(
(2/7)Rrad/trad

cs

)7/5

trad ≈ 1.87× 106 yr E0.32
51 n−0.37

0

( cs
10 km s−1

)−7/5

(138)

Rfade ≈ 2.07× 1020 cmE0.32
51 n−0.37

0

( cs
10 km s−1

)−2/5

(139)

Why does this happen? Internal pressure is not greater than external pressure. The SN
could run into a dense structure, or radiative cooling may dominate.

4.5 Why would we care about this?

McKee & Ostriker (1977), in a classic paper, argued that blastwaves from SNe have a large
impact on shaping the ISM. The envisioned an ISM consisting primarily of the CNM and
the HIM. The WNM and WIM are restricted to the interface regions of the neutral clouds,
and the WIM in direct contact with the HIM and photoionized by thermal emission from it.
A blastwave propagates into these media.

The authors view the ISM as being composed of numerous small (spherical!) clouds of
molecular gas, embedded in a diffuse hot ISM (HIM). Each cloud has an ionized halo (the
WIM) maintained by the interstellar UV background. Between the ionized halo and the
cloud itself, they suggest the presence of a neutral zone heated by interstellar X-rays.

It turns out this isn’t really correct in detail, but nonetheless provides a useful framework.
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