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Snell’s Law

When light passes from one medium into another, it will be bent

n1 sin(θ1) = n2 sin(θ2) , (1)

where n is the index of refraction. Each material has a different index of refraction. This is the ratio of the
velocity of light in a vacuum to that in the medium, n = c/v. Therefore different materials will bend light
different amounts.

Lenses do two things: they bend and magnify light. Lenses have a focal length f .

Lenses will magnify light. We know that from the “thin lens formula”:
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where di is the image distance and do is the object distance. The magnification
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where di is positive on the left hand side of the image and do is positive on the right hand side. If an object
is placed at a distance di > f from a lens of focal length f , an image will be formed at do. In this case both
di and do are positive, and the magnification is negative. This is how a camera works. If the object is at
distance di < f , di is negative and the magnification is positive. This is how a magnifying glass or telescope
work.

Gravitational Lenses

From Einstein’s theory of general relativity, we know that gravity distorts spacetime. Therefore, gravity
itself can act as a lens, an effect Einstein noted in 1936 (he said that this would never be observed because
the effect was too weak; stupid Einstein). Fritz Zwicky found that galaxy clusters can lens background
galaxies in 1937, and the effect was detected in 1979. Gravitational lenses are different from optical lenses
because the “lens” is spherical:
1) maximum bending is found close to the lens
2) there is no single focal length, but rather a focal line.
3) because of the large distances and strong gravity, there is a time-delay for less heavily-lensed background
events relative to heavily lensed events (this effect is present for normal lenses, but is difficult to observe).

Unlike normal lenses, all light is affected equally for gravitational lenses.

From GR we know that the coordinate speed of light passing distance r from point mass M in the radial
direction is
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This approximation is valid because 2GM/rc2 is so small. Our book notes that 104 pc from a 1011 M�
galaxy n = 1 + 9.6× 10−7 – pretty much unity.

From GR, the angle of deviation
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where φ is in radians and r0 is the distance from the mass (this differs from Newtonian by a factor of 2).

In the figure, θ is where the lensed object will appear. From trigonometry, one can find
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This is obviously a quadratic equation with two solutions for θ:

θ = 0.5

(
β ±

[
β2 +

16GM

c2

(
dS − dL
dSdL

)]0.5)
(8)

For the special case of perfect alignment, β = 0 and
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where θE is the “Einstein radius.” For cosmological distances, the Einstein radius is θE ' (fewM0.5
� )′′.

We can therefore reformulate the above equation to be

θ2 − βθ − θE = 0 (10)

Because cluster mass distributions are spread out, we can get a variety of morphologies:
1) two images of the background source, as implied by above equations
2) if we do not assume spherical symmetry, we can get an Einstein cross
3) if alignment is perfect, get Einstein ring. Note that in this case we can directly determine the lensing
mass if the distances are known. [how can we get distances?]
4) Similar to 3), we find multiple arcs around galaxy clusters. These are partial Einstein rings caused by
clumpiness in the gravitational potential

Magnification
The derivation is a bit beyond the level for this course and not terribly instructive, but gravitational lenses
result in a magnification that is always > 1.

Time Delay
Because of the longer pathlengths and the fact that the different rays have traversed different potentials, we
get path delays of months to years between the same event.

Gravitational lenses have been used to estimate the masses of clusters, which has led to their large inferred
mass to light ratios. By examining the position and magnification of the various lensed images, we can
reconstruct the mass distribution.
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