ASTR367 Final Review Topics

Equations to memorize

$$L = 4\pi d^2 F \tag{1}$$

$$d[''] = \frac{1}{p} \operatorname{pc} \tag{2}$$

$$m_1 - m_0 = -2.5 \log_{10}(F_1/F_0) \tag{3}$$

$$\frac{F_1}{F_0} = 10^{0.4(m_0 - m_1)} \tag{4}$$

$$M_1 - M_0 = -2.5 \log_{10}(L_1/L_0) \tag{5}$$

$$\frac{L_1}{L_0} = 10^{0.4(M_0 - M_1)} \tag{6}$$

$$m - M = 5\log d - 5 \tag{7}$$

$$\lambda_{\max} = \frac{0.2898}{T(\mathrm{K})} \mathrm{cm} \tag{8}$$

$$L = A\sigma T^4$$
 (Stephan – Boltzmann; $A = 4\pi R^2$ for spheres) (9)

$$\tau_{\nu} = \int \kappa_{\nu} \rho ds \tag{10}$$

$$z = \frac{\Delta\lambda}{\lambda_0} = \frac{\Delta\nu}{\nu_0} = \simeq \frac{v_r}{c} \,. \tag{11}$$

$$R_s = \frac{2GM}{c^2} \tag{12}$$

$$P^{2} = \frac{4\pi^{2}}{G(M+m)}a^{3}, \qquad (13)$$

Equations I would give you

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1} \tag{14}$$

$$B_{\lambda} = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} \tag{15}$$

$$f(v) = \sqrt{\left(\frac{m}{2\pi kT}\right)^3} 4\pi v^2 e^{-\frac{mv^2}{2kT}}$$
(16)

$$\frac{n_i}{n_j} = \frac{g_i}{g_j} e^{-E_{\rm ij}/k T_{\rm ex}} \tag{17}$$

$$\frac{n_{i+1}n_e}{n_i} \simeq 2\left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} \frac{g_{i+1}}{g_i} \exp\left[-\frac{\Phi_r}{kT}\right]$$
(18)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + B_{\nu}(T)(1 - e^{-\tau})$$
(19)

$$\frac{dP}{dr} = -G\frac{M_r\rho(r)}{r^2} = -\rho g \tag{20}$$

$$\frac{dM_r}{dr} = 4\pi r^2 \rho(r) \tag{21}$$

$$\frac{dL_r}{dr} = 4\pi r^2 \rho \epsilon \tag{22}$$

$$\frac{dT}{dr}_{\rm rad} = -\frac{3}{4ac} \frac{\bar{\kappa}\rho}{T^3} \frac{L_r}{4\pi r^2} \tag{23}$$

$$\frac{dT}{dr}_{\rm conv} = -\left(1 - \frac{1}{\gamma}\right) \frac{\mu m_H}{k} \frac{GM_r}{r^2}$$
(24)

$$(ds)^{2} = \left(cdt\sqrt{1 - 2GM/rc^{2}}\right)^{2} - \left(\frac{dr}{\sqrt{1 - 2GM/rc^{2}}}\right)^{2} - (rd\theta)^{2} - (r\sin\theta d\phi)^{2}, \qquad (25)$$

$$\frac{m_2^3}{(m_1 + m_2)^2} \sin^3 i = \frac{P}{2\pi G} v_{1,\mathrm{r}}^3 \,. \tag{26}$$

$$T_{\rm disk} = \left(\frac{GM_1\dot{M}}{8\pi\sigma R^3}\right)^{1/4} \tag{27}$$

$$L_{\rm disk} = G \frac{MM}{2R} \tag{28}$$

$$R_J \simeq \sqrt{\frac{kT}{G\mu\rho}}\,.\tag{29}$$

$$M_J = \left(\frac{5kT}{G\mu}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2} \tag{30}$$

Units

cgs vs SI Degrees minutes seconds Solid angle Intensity, flux, luminosity definitions and their relationships to each other Parallax Apparent and absolute magnitudes Astronomical filters and colors

Blackbodies

Units of blackbodies How filters and blackbodies interact for astronomical colors Color-magnitude diagrams

Stellar Spectra

Kirchoff's Laws Optical depth Sources of opacity Maxwell-Boltzmann speed distribution Boltzmann equation Saha equation Local Thermodynamic Equilibrium Line Broadening mechanisms Curve of growth and equivalent width

Stars

Basic property ranges and reasons Initial mass function Spectral types Mass-Luminosity relation Metallicty definition H-R diagram including accurate axes

Stellar Interiors

Hydrostatic equilibrium Eddington luminosity Radiation vs. convection Nucleosynthsis and main fusion reactions

Star Formation

Jean's mass/radius from hydrostatic equilibrium Jean's mass/radius from Virial theorem Virial theorem itself Free-fall time Zero-age main sequence

Stellar Evolution

Electron degeneracy pressure Red giants, asymptotic giants, horizontal branch, planetary nebulae, white dwarfs

Supernovae

Massive star evolution Types of supernovae and their observables Nucleosynthis in supernovae

Stellar Pulsations

Types of variable stars and their basic characteristics The period-luminosity relation for Cepheids Pulsation rate dependence

White Dwarfs

Basics of electron degeneracy pressure Chandrasekhar mass limit Basics of WD cooling

Neutron Stars

NS spin rate and temperature derived from collapse Pulsars, including how we can derive pulsar luminosity from rotational energy

GR and **Black** Holes

Redshift definition Gravitational redshift Schwartzchild metric, and all the various situations Schwatzchild radius What happens as matter falls into a black hole Hawking radiation

Brown Dwarfs

Initial mass function Rough sizes, temperatures, classes

Binaries

Kepler's Laws Spectroscopic binaries and the mass function The light curves of eclipsing binaries Lagrangian points Accretion disks Binary evolution for all stellar masses Novae Supernovae Type 1a

The sun

Basic properties Solar layer definitions and rough properties Solar magnetic field and its effects Sunspot cycles