
Stellar
Radiation

Radiative transfer

Radiative transfer is the change in intensity dν as radiation propagates from
a source to the observer. Along the way, the emission will either be absorbed
and scattered by intervening material, or it will encounter an emitting region.
Consider an observation of a source shown schematically below (figure taken
from “Essential Radio Astronomy”) where the specific intensity is modified by
absorption (attenuation) and/or emission from an intervening medium.

For attenuation, we can define a “linear absorption coefficient” κν with units of
cm−1. This is misleading since it contains contributions from both absorption
and scattering!1 Note that this is not opacity or mass absorption coefficient,
although both share the same notation and a similar definition! Sorry for the
confusion. The amount of energy absorbed is proportional to the light intensity:

dν = −κννds, (1)

where ds is the path. Absorption removes photons from the path, thus the
negative sign. It is worth pointing out here that absorption excites atoms
and molecules, and these atoms and molecules then re-emit. It this emis-
sion was beamed along ds there would be no change in intensity. Instead, the
re-emitted light is more generally close to isotropic, so the emission is reduced.

For emission, we can define the emission coefficient jν as:

dν = jνds. (2)
1Absorption and scattering are easy to confuse. The main difference is that in scattering,

the scattered radiation direction depends on the incident photon direction. Re-emission follows
absorption, but this re-emission is isotropic.
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Notice that there is no dependence on ν, in contrast to absorption. The units
of jν are erg cm−1 sr−1 s−1.

The total change in intensity is therefore

dν = jνds − κννds, (3)

or
dν

ds
= jν − κνν. (4)

Equations 3 and 4 represent one form of the Equation of Radiative Transfer.
This is one of the fundamental equations in astrophysics. All it is saying, how-
ever, is that the change in intensity along the path is just the emission (jν)
minus the absorption (κνν).

Let’s take the illustrative example of no emission. In this case

dν

ds
= −κνν, (5)

which has a solution
ν(s) = ν,0e−κνs, (6)

where ν,0 is the unattenuated emission. The radiation intensity will decrease
exponentially.

We can also define the dimensionless quantity of optical depth τ from

dτν = −κν ds. (7)

or

τν = −
∫

κν ds, (8)

where the integration is carried out over the path length. In most cases, we
need only integrate over the source of interest. For example, if there is a gas
cloud 20 kpc away that is 1 kpc thick, we may be able to only integrate over the
1 kpc of the cloud if the rest of the 20 kpc can be assumed to have no impact.
For completeness,

ν(τν) = ν,0e−τν , (9)

The optical depth ranges from zero to infinity. Low values τν ≪ 1 are called
“optically thin.” These are things you can see through at that particular fre-
quency. A good example is glass, which has a very low optical depth at optical
frequencies, but actually has a high optical depth in the ultra-violet. High
values τν ≫ 1 are called optically thick. A wall is optically thick at optical fre-
quencies. A wall is optically thin at X-ray frequencies. Near τ ≃ 1 we have to
be careful - this is marginally optically thick.
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If we rewrite things in terms of the optical depth, using dτν
ds = κν,

dν

dτν
=

jν

κν
− ν. (10)

We can further define the Source function Sν

Sν =
jν

κν
(11)

Combining our expressions, we arrive a second form of the Equation of Radia-
tive Transfer, this time using the optical depth and source function so that

dν

dτν
= Sν − ν. (12)

We will use this one from now on, because optical depth is a much better and
more measurable parameter compared to actual linear depth.

In (full) thermodynamic equilibrium (TE) at temperature T, there is no change
in intensity along the path and dν

dτ = 0. In this case, ν = Sν = Bν(T), our old
friend the Planck function. When is ν = Bν(T)??? When dτ → ∞! Or in other
words, when the optical depth is high, the intensity is that of a blackbody at
temperature T. In this case, nothing else about the source matters, only its
temperature.

This is a subtle, but extremely important point. For high optical depth sources,
the only emission you can get out is that of a blackbody. You cannot for exam-
ple get line emission. The source properties, aside from temperature, do not
matter. The only thing you see is the surface emission. In fact, you only see
down on average to the depth where the optical depth is unity. Think of a wall
again, where you cannot determine how thick it is since you only see the paint
layer (ok, so a wall actually is not a perfect blackbody since paint reflects light
of different wavelengths....). Contrast this with glass. As glass get thicker, and
thicker, we will notice more of a green hue. By determining how green it is, we
can work out how thick it is. We will return to this point later.

Solutions to the Equation of Radiative Transfer

The deceptively simple equation of radiative transfer has had volumes written
about its solutions. We can integrate the transfer function by multiplying by
eτν . If we define τν = 0 at ν,0, we find

ν(τν) = ν,0(τν)e−τν +
∫ τν

0
Sν(τ′)e−(τν−τ

′
ν) dτ′ (13)
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The intensity ν at optical depth τν is the initial (background) intensity ν,0 at-
tenuated by a factor e−τν , plus the emission Sνdτ

′
integrated over the path,

itself attenuated by the factor eτν−τ
′
ν . This final exponent represents “self-

absorption.” The material itself will absorb its own radiation. “Self-absorption”
refers to absorption by one species (HI, CO, etc) by that species. If back-
ground radiation from e.g. HI is absorbed by optically thick HI, this is called
self-absorption. This is known as the “formal solution to the equation of radia-
tive transfer.”

The difficulty in using Equation 13 is that in general we don’t know how S
varies with τ, because S depends on , which is not known until S is known. It’s
a circular problem, which is why it is often solved computationally. It is worth
examining this equation a bit more in limiting cases that allow us to simplify
the integral:

τ = 0

If the optical depth is zero, we get ν = ν,0, simply the background intensity
back. If there is no optical depth, we get neither emission nor absorption (like a
window!). This illustrates how emission and absorption are intimately related.

S constant

We can sometimes make the assumption that Sν is a constant, so we can pull
it out of the integral:

ν(τν) = ν,0(τν)e−τν + Sν

∫ τν

0
e(−τ−τ

′) dτ′ = ν,0(τν)e−τν + Sν(1 − e−τν) (14)

The first term on the right hand side is attenuation along the line of sight. The
second one is emission along the line of sight.

S constant, LTE

In Local Thermodynamic Equilibrium, LTE, Sν = Bν(T), so

ν(τν) = ν,0(τν)e−τν + Bν(1 − e−τν). (15)

We will discuss LTE later, but essentially it means that for a small volume we
can assume a single temperature that is also reflected in the level populations
of the atoms and molecules.

S constant, LTE, Radio Regime

In the radio, we use the brightness temperature instead of the intensity. They
are related by ν =

2ν2

c2
kTB. We can also use the Rayleigh-Jeans approximation
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Bν(T) =
2ν2

c2
kT, with T here the kinetic temperature. Since these relationships

both have the same constants, we can write

TB = TB,0e−τν + T(1 − e−τν). (16)

Note that the use of the Rayleigh-Jeans approximation here does not imply that
the material is optically thick. It just implies that the emission is still modified
by the optical depth.

S constant, LTE, Optically Thin

If τ≪ 1, we get emission from the background radiation, as well as from along
the line of sight. We can make the Taylor expansion substitution e−τν ≃ 1− τν,
so

ν(τν) = ν,0(τν)(1 − τν) + Bντν ≃ ν,0(τν) + Bντν. (17)

The first term again is the background radiation attenuated by the ISM. The
second term is the Planck function modified by the optical depth of the ISM.
Notice that we can still have a blackbody-like spectrum even if it is optically
thin, although it is modified by the optical depth (which is less than 1). In the
case that τν = 0, we of course only see the background radiation. In the radio
regime,

TB = TB,0(1 − τν) + Tτν ≃ TB,0 + Tτν. (18)

S constant, LTE, Optically Thick

If τ≫ 1, e−τν → 0, so
ν = Sν. (19)

If there is a blackbody in our line of sight, we don’t see any emission from
behind it. In radio astronomy, TB = T for optically thick emission, the kinetic
temperature of the material (if in LTE).

ν(τν) = ν(0)e−τν + Bν(T)(1 − e−τν) , (20)

where ν(0) is the background radiation and τν is the optical depth. So as
τ → ∞, ν(τν) → 0 + Bν(T)(1 − 0) = Bν(T). To summarize, the Planck function
has units of specific intensity or surface brightness, and in the limit of high
optical depth, ν = Bν.

There are a two important points about blackbody radiation.

1. The wavelength (or frequency) of peak intensity is inversely related to the
temperature via Wien’s Law:

λmx =
0.2898

T(K)
cm , (21)
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or
νmx = 5.879 × 1010T(K) . (22)

We can derive these by setting the differential of Bλ or Bν equal to zero.
This tells us that hotter things peak at shorter wavelengths and higher
frequencies.

The Sun for instance is 6000 K and peaks near 500 nm in the optical. A
104 K star peaks closer to 300 nm in the UV.

2. A hotter blackbody has a higher surface brightness intensity at all fre-
quencies.

It is important to remember that more intensity at all frequencies does
not necessarily mean more energy! Think about burners on a stove. A
small hot burner will have very intense radiation. A large cooler burner
will have less intense radiation. But the larger one may boil water faster
because although its intensity (surface brightness) is lower, it emits more
total energy. What matters is the product of the surface brightness and
the emitting area.

Let’s quantify this. To find the intensity (not the specific intensity), we
integrate over all frequencies or wavelengths:

B(T) =
∫ ∞

0
Bν(T)dν . (23)

After some math, this integral results in the expression

B(T) =
σT4

π
, (24)

where σ is of course the Stephan-Boltzmann constant. In the case of
an isotropic radiation field, which we can frequently assume, it can be
shown that Fν = πBν, so therefore F = σT4. This is of course the Stephan-
Boltzmann Law. We are often interested in the total luminosity of an
object (in erg s−1 or W):

L =
∫

S
FdA , (25)

the flux integrated over the emitting surface. For spherical objects, this
leads to L = 4πr2σT4, where r is the object’s radius. Thus, the total energy
output is related to the surface area and the temperature.

Stellar Radiation

A photon created deep in a stellar interior will have a hard time escaping to the
surface. With each interaction, the photon direction is randomized. There is a
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pressure gradient from the inside out, and this can slowly direct the photons
to the surface. Between interactions, a photon travels one mean free path ℓ. If
it is to travel distance R, the radius of a star, C+O argue that it needs to have
N interactions and

R = ℓ
p

N . (26)

In terms of time, this is millions of years.

Although we often assume that we can see down to τλ = 1, for stars it is
actually closer to τλ = 2/3 (see C+O, Section 9.4). For a sightline passing
through the edge of the star, τλ = 2/3 is only reached at the outer layers,
which are cooler. For a sightline looking straight at the star, we can see down
further into the interior. This effect is known as “limb darkening.”

Kirchoff’s Laws

We can divide a spectrum into “line” and “continuum” components. A spec-
tral line is a decrement or excess intensity on top of the continuum [draw figure
of spectral line]. Spectral lines are produced from discrete (quantized) tran-
sitions, most simply by electrons through electric dipole radiation, although
many more emission mechanisms are possible. Continuous radiation can come
from a variety of different emission mechanisms. The distinction is whether
the energy levels are quantized (emission and absorption lines) or not (contin-
uous).

Figure 1: Spectra for stars of various spectral types, showing absorption lines
on top of the continuum.

There are two broad types of line spectra:
Absorption lines (decreases in intensity relative to nearby continuum) are
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produced when a cold gas is between a continuous spectrum source and the
detector. Atoms in the cold gas absorb photons from the continuous spectrum
source. The photons are then emitted in random directions, removing inten-
sity along the line of sight. What is a continuous spectrum source? Stars and
quasars are pretty close (especially quasars). Most stellar spectra are absorp-
tion line spectra, however, because the outer layers of the photosphere are
less dense and colder than the core.

Emission lines at discrete wavelengths are produced when the detector sees
photons emitted directly from a (hot) gas. The wavelengths of the emis-
sion lines are due to electronic transitions within the atoms and are therefore
unique to each atom.

The highest intensity radiation at a given frequency is at high optical depth
(τν → ∞), which is given by the Planck function. Let’s imagine that you have
continuous radiation of low optical depth (a “gray-body”), an emission line’s
peak intensity is limited to the Planck function intensity.

The spectrum you observe depends on the density (the optical depth) of the
object, and the viewing direction. Observing the same object from a different
direction will give you a different signal. Kirchoff’s Laws tell us how to inter-
pret the spectra we observe. There are multiple sets of Kirchoff’s Laws, so it is
safe to assume that Kirchoff was wicked smart and interesting at parties.

Kirchoff’s three laws of spectra are:

• A dense object produces light with a continuous (blackbody) spectrum.
Kirchhoff also coined the term blackbody radiation because he was a
show-off. You emit blackbody radiation, with a peak in the infrared.

• A hot diffuse gas produces an emission line spectrum due to electronic
transitions within the gas. Fluorescent lights are a good example.

• A hot dense object surrounded by a cool tenuous gas (i.e., cooler than the
hot object) produces an absorption line spectrum. The absorption lines
are at exactly the same wavelengths as the emission lines for a given
element, and are also due to electronic transitions.

Line Broadening

Emission and absorption lines are not delta functions, they are broadened by
some mechamisms. What can broaden spectral lines?
1) Thermal doppler motion due to gas particles at a given temperature, “Doppler
broadening.” Not all particle speeds will be the same of course. As the tem-
perature increases, the range of speeds does too.
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Figure 2: Kirchoff’s Laws

2) “Turbulent broadening” due to the fact that there are bulk motions within
any gas.
3) Natural broadening due to the fact that the energy “level” is not a single
value, and
4) Pressure or collisional broadening, which changes the energy levels.

Each of these mechanisms has an associated line shape. Doppler broadening
is Gaussian, and turbulent is usually assumed to be Gaussian as well. Natural
and Collisional broadening are “Lorenzian,” which is like a Gaussian but with
much larger “wings.” All four processes operate at the same time, resulting in a
“Voigt” profile with a Gaussian core and Lorentzian wings. Since the Lorentzian
wings are at low intensity, usually something best approximated by a Gaussian
is observed.

Gaussians are magical functions. A normalized Gaussian takes the form of

ϕ(ν) =
1

σ
p
2π

e
−
�

(ν−ν0)2

2σ2

�

. , (27)

where ν0 is usually the line center and σ is the one-dimensional velocity dis-
persion. You can see that the line will be of maximum intensity when ν = ν0 at
line center, then ϕ(ν0) =

1
σ
p
π
.

We can also define the full-width at half-maximum (FWHM) as

FWHM =
p

8 ln2σ = 2.355σ . (28)

For thermal gas with particles of mass m following a MB distribution,

σ =
�

kT

m

�1/2

= 9.12
�

T4

m/m

�1/2

kms−1 . (29)

The constant goes to 21.47 kms−1 for the FWHM.

The thermal line width increases with increasing temperature and decreases
with increasing mass.
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Gaussians have the amazing property that the area under the curve is approx-
imately the FWHM times the peak. They are also their own Fourrier transform
pair, and a Gaussian convolved with a Gaussian leads to another Gaussian.
This last point is very important in astronomy. Frequently, the spectral re-
sponse of your instrument can be assumed to be Gaussian, and the source or
spectral line Gaussian as well. Therefore, you will observe a Gaussian.

Why do we get Gaussians? We had the MB velocity distribution before:

ƒ () =
� m

2πkT

�3/2
4π2e−m2/2kT . (30)

What you have probably never seen is that in 1D the 4π2 term goes away.
This term arises in 3D due to the density of velocity states available (see Hyper-
physics site). This is a Gaussian! Looking at Equation 27, the original exponent
numerator was −(ν−ν0)2 and is now −2. The original exponent denominator
was 2σ2 and is now 2kT/m. We can define:

σ =
�

kT

m

�1/2

= 9.12
�

T4

m/m

�1/2

km/s , (31)

where T4 is the temperature in units of 104 K. The FWHM is 2.355σ, or

FWHM = 2.355σ = 21.47
�

T4

m/m

�1/2

km/s . (32)

This leads to:

ƒ () =
1
p
2π

1

σ
e−

2/2σ2 . (33)

You can see how the velocity dispersion σ goes into the Gaussian.

We can assume that turbulence adds another Gaussian term, and we can add
the thermal and turbulent components in quadrature, which leads to

σ =
�

kT

m
+ 2

trb

�1/2

, (34)

We often don’t know trb, but given a spectral line we can determine it from
the linewidth if we can estimate the temperature.

The natural width arises due to the uncertainty principle: ΔEΔt ∼ h̄. Here,
Δt = A−1ℓ , so short-lived states have large uncertainties in energy. Because for
electric dipole radiation Aℓ ∝ ν3, ΔE ∝ ν3 and natural broadening is important
at high frequencies. It gives rise to a Lorentzian profile function

ϕ(ν) =
γ

4π2
1

(ν − ν0)2 + (γ/4π)2
, (35)
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Figure 3: Equivalent width.

where γ is a constant for each species related to the spontaneous decay rates

γ = Aℓ. (36)

Like natural broadening, collisional broadening distorts the energy levels, lead-
ing to an additional Lorentzian term that can be combined with natural broad-
ening:

ϕ(ν) =


4π2
1

(ν − ν0) + (/4π)2
, (37)

where  = γ + 3νcol , and νcol is the collision frequency, νcol = nσ.

In the radio, Doppler and turbulent broadening are typically the largest. At
high frequencies (X-ray), natural braodening can make a large contribution.

Characterizing Spectral Lines

It is often preferable to fit a line profile to a spectral line in order to characterize
its emission. An alternative method, called the “equivalent width,” is insensi-
tive to the exact profile. The equivalent width is the width, in wavelength or
frequency units of a rectangular area equal to that of the spectral line:

Wλ =
∫

(1 − Fλ/F0)dλ (38)

The intensity of a spectral line changes with the optical depth at line center.
This is usually parameterized as the change in the optical depth, or the change
in “column density,” the integral of the number density over the pathlength.
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Figure 4: Line saturation for various optical depths
(http://spiff.rit.edu/classes/phys440/lectures/curve/curve.html).

Let’s assume we have an absorption line and no source function:

ν

ν,0
= e−τν (39)

Initially, the more absorbing atoms there are, the stronger the absorption line.
If we keep adding absorbers to the path, however, eventually the line will
saturate. A saturated line means that at line center (the most probable speed
in a MB distribution) no more intenisity can be added. After it saturates, the
equivalent width grows slowly, because there are few atoms with the requisite
speeds, until the growth of the line wings becomes important.

The column density is a fundamental quantity in astronomy, since it is directly
related to what we measure. Since κν ∝ n and τν =

∫

κν ds, τ ∝
∫

nds = N.
This is the number of particles along a 1 cm2 cylinder path.

This leads to three important regimes:
1) The “Linear” regime (τ ≲ 5) where the equivalent width W is proportional
to the column density, W ∝ N.
2) The “saturated” regime where W ∝

p
lnN, and

3) The “damping” regime where collisional broadening takes over, W ∝
p
N.
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Figure 5: The curve of growth. The x-axis is parameterized in terms of the
oscillator strength, which is a parameter unique for each transition.
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