
Stellar - Stellar Evolution
Prialnik Ch 12, C+O Chapter 12

Star Formation

Stars have to form somehow, because stars exist. The formation of stars must
involve collapse of a molecular cloud. The larger molecular clouds, called “gi-
ant molecular clouds,” have mean densities of ∼ 102 cm−3 or so, and sizes of
maybe 100 pc (∼ 1018m). A higher-density region within them must collapse
down to ∼ 109m (the size of a star), with densities of ∼ 1024 cm−3 (the mean
density of a star).

When does this collapse occur? When gravity overcomes pressure. The condi-
tion where gravity and pressure are in balance is of course called “hydrostatic
equilibrium.” One treatment says that a cloud not in hydrostatic equilibrium
that will collapse has a characteristic size of the “Jeans radius” and mass of
the “Jeans Mass” (the condition of instability is the “Jeans Instability”). We will
derive these quantities first from the hydrostatic equilibrium condition. We will
also do the same derivation using the Virial theorem.

Jeans Mass from Hydrostatic Equilibrium [FollowingWikipedia
page]

The Jeans mass is named after the British physicist Sir James Jeans, who con-
sidered the process of gravitational collapse within a gaseous cloud. He was
able to show that, under appropriate conditions, a cloud, or part of one, would
become unstable and begin to collapse when it lacked sufficient gaseous pres-
sure support to balance the force of gravity. The cloud is stable for sufficiently
small masses (at a given temperature and radius), but once this critical mass
is exceeded, it will begin a process of runaway contraction until some other
force can impede the collapse (fusion, in the case of a star). He derived a
formula for calculating this critical mass as a function of its density and tem-
perature. The greater the mass of the cloud, the smaller its size, and the colder
its temperature, the less stable it will be against gravitational collapse.

Hydrostatic equilibrium is:
dP

dr
= −

Gρ(r)Mr

r2
, (1)

where Mr is the enclosed mass, P is the pressure, ρ(r) is the density of the
gas at r, G is the gravitational constant and r is the radius. The equilibrium is
stable if small perturbations are damped and unstable if they are amplified. In
general, the cloud is unstable if it is either very massive at a given temperature
or very cool at a given mass for gravity to overcome the gas pressure.
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Let’s say we have a spherical molecular cloud cloud of radius R, mass M, and
sound speed cs. Compression of this region can only proceed at approximately
the sound speed, which gives a characteristic time of:

tsond =
R

cs
(2)

for sound waves to cross the region. Gravity will attempt to contract the sys-
tem even further, and will do so on a free-fall time,

tff =

√

√

√

3π

32Gρ
. (3)

We have collapse when tff < tsond. In this case, the collapse is fast enough that
the cloud cannot re-establish equilibrium, which takes place over the timescale
given by the sound speed.

It is worth taking a slight detour here to describe how long these free fall times
are. For large scales, the growth time for the Jeans instability is

τJ ≃ 2.3 × 104yr
�

106 cm−3

nH

�1/2

(4)

For nH = 1000 cm−3, this is about 0.7 Myr. Free fall time (collapse timescale
for a pressure-less gas) is:

τƒ ƒ =
�

3π

32Gρ0

�1/2

= 4.4 × 104 yr
�

106 cm−3

nH

�1/2

(5)

For nH = 1000 cm−3 this is 1.4 Myr - slightly longer than growth time.

OK, back to the Jeans mass and radius. The resultant Jeans radius RJ is there-
fore:

λJ ≃
cs
p

Gρ
(6)

The speed of sound is

cs =

√

√

√

γP

ρ
, (7)

where γ is the adiabatic index, which is 7/5 for molecular gas and 5/3 for
monotonic gas. The pressure P = nkT = ρ/μkT assuming an ideal gas, with
mean mass μ, so we have

RJ ≃

√

√

√

kT

Gμρ
. (8)
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The real definition gives a factor of order unity out front:

RJ ≃

√

√

√

15kT

4πGμρ
≃ (0.4 pc)
� cs

0.2 km s−1

�� n

103 cm−3

�−1/2
. (9)

All scales larger than the Jeans length are unstable to gravitational collapse,
whereas smaller scales are stable.

Perhaps the easiest way to conceptualize Jeans Length is in terms of a close
approximation, in which we rephrase ρ as M/r3. The formula for Jeans’ Length
then becomes:

RJ ≈

√

√

√
kBTr3

GMμ
, (10)

and therefore RJ = r when kT = GMμ
r . In other words, the cloud’s radius is

the Jeans Length when thermal energy per particle equals gravitational work
per particle. At this critical length the cloud neither expands nor contracts. It
is only when thermal energy is not equal to gravitational work that the cloud
either expands and cools or contracts and warms, a process that continues
until equilibrium is reached.

We can recast this in terms of the “Jeans mass”:

MJ =
�

4π

3

�

ρR3J =
�

5kT

Gμ

�3/2 � 3

4πρ

�1/2

≃ (2 M⊙)
� cs

0.2 km s−1

�3 � n

103 cm−3

�−1/2
.

(11)
The Jeans mass MJ is just the mass contained in a sphere of radius RJ. It is
useful to remember that MJ ∝ T3/2ρ−1/2. Thus, stars can form most efficiently
(when mass is low) in low temperature, high density locations where the Jeans
mass is not as great.

The above is an illustrative and wrong derivation! Jeans assumed that the
collapsing region of the cloud was surrounded by an infinite, static medium.
The pressure in hydrostatic equilibrium is therefore less than that required,
and the mass is therefore too high. We will fix this problem below.

A larger issue is that because all scales greater than the Jeans length are also
unstable to collapse, any initially static medium surrounding a collapsing re-
gion will in fact also be collapsing. As a result, the growth rate of the gravita-
tional instability relative to the density of the collapsing background is slower
than that predicted by Jeans’ original analysis. This flaw has come to be known
as the “Jeans swindle”.
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The Jeans Mass from the Virial Theorem

The Virial Theorem says that for gravitationally bound systems in equilibrium,
the total energy is one-half of the time-averaged potential energy. The gravita-
tionally bound aspect is important. If the system is not gravitationally bound,
the Virial Theorem will not hold. Such cases give rise to contraction or expan-
sion.

We can also derive the Jeans mass using the Virial theorem. Like the con-
dition of hydrostatic equilibrium, the Virial theorem describes a system in
equilibrium. If the kinetic energy of a system is U and the gravitational po-
tential energy is Ω, the simplest incarnation of the Virial theorem says that
2U + Ω = 0. An expanding gas cloud will have more kinetic energy than gravi-
tational (2U > −Ω) and a contracting cloud will have more gravity (2U < −Ω).

Each particle in a gas cloud has kinetic energy, E = 3/2kT, so the total kinetic
energy U = N E = 3/2NkT , where N is the number of particles. Easy!

The gravitational potential energy in spherical shell of mass dm is

dΩ = −G
mdm

r
. (12)

From mass conservation, we know

dm = 4πr2ρdr . (13)

Putting these two expressions together, we find

dΩ = Gm4πrρdr . (14)

We can integrate this from 0 to R to get the gravitational potential, but not
if we don’t know how ρ and Mr depend on r. For a constant density sphere
(polytropic index n = 0),

ρ ≃ ρ̄ =
M

4/3πR3
(15)

so
Mr ≃ 4/3πr3ρ̄ . (16)

The integral then gives

Ω ≃ −
3

5

GM2

R
, (17)

which is the gravitational potential for an “isothermal” sphere. We had this
before, but it’s so fundamental that it’s worth re-deriving.

Therefore,

3NkT = −
3

5

GM2

R
. (18)
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We can replace N = M/μ , with μ the mass per particle, and R = (3M/4πρ)1/3 to
get

MJ =
�

5kT

Gμ

�3/2 � 3

4πρ

�1/2

(19)

The same as before! Physics!

Fragmentation

Of course this is a simplification – a single cloud does not collapse down to
r = 0. What happens to complicate the collapse? As the cloud collapse, density
rises. Since the collapse is isothermal, a rising density means the Jeans mass
of the cloud is falling, so small pieces of the cloud start to collapse on their
own. A rising density also means a declining free fall time, so these small
dense clumps collapse faster than the overall cloud.

Instead of one giant cloud undergoing a monolithic collapse, the cloud frag-
ments into small collapsing pieces. So what stops this fragmentation? As the
density rises, the opacity rises. At some point during the collapse and fragmen-
tation process, the opacity rises high enough that the energy created during
the collapse is absorbed within the star itself – it begins to heat up. Since the
energy is not lost from the cloud, we call this an adiabatic collapse. Higher
temperature means higher pressures (the ideal gas law), which halt the free
collapse of the star. Since the cloud absorbs all the gravitational energy of
collapse, it heats up, and it starts to act like a blackbody.

At what mass does this happen? We can balance the rate of energy loss
through gravitational collapse to the rate at which the cloud radiates black-
body energy, and, solving for the mass, we find M ≈ M⊙. In other words,
collapse halts when the fragment masses reach star-like masses.

Bonner-Ebert Spheres

In a more realistic scenario, the density is centrally peaked. In this case, the
gravitational energy is

U = −
3

5

GM2

R
, (20)

where  > 1 for centrally peaked density profiles. Mouschovias & Spitzer
(1976) find  ≈ 1.67 for numerical models of clouds on the verge of collapse.

In our above consideration of the Virial theorem, we neglected external pres-
sure and magnetic energy. If we consider the former, with the above mod-
ification to the gravitational potential, we arrive at the “Bonner-Ebert mass”
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(Bonner 1956; Ebert 1957):

MBE(p0) =
225

32
p
5π

c4s
(G)3/2

1
p
p0
= 0.26
�

T

10 K

�2�106 cm−3 K

p0/k

�1/2

M⊙ (21)

Remember how we said that the Jeans mass neglected some rather important
things? Well, the Bonner-Ebert mass is basically the same as the Jeans mass,
MBE ≈ 1.18MJ. The 18% change is due to the fact that the cloud itself affects
the hydrostatic equilibrium assumption before.

Given the typical temperature and pressures of molecular clouds, the Bonner-
Ebert mass is about a Solar mass, so it is probably no surprise that this is
approximately the peak of the IMF.

Of course we still neglect the magnetic fields. The magnetic energies are
similar to the kinetic energies, and so can contribute to the pressure. But the
physics of magnetic fields is less understood, and more complicated, so we’ll
omit discussion!

Formation of Actual Stars

During the formation of stars, cores more or less free-fall collapse. The free
fall time depends inversely on the density, so the central part collapses first,
then the outer parts. What would provide resistance? [Pressure!] What would
pressure be unimportant? [Cooling from molecular lines!]. This “cooling” of
course releases energy that we can detect. This energy peaks in the sub-
millimeter to far-infrared. How much energy is liberated? Where does it go?

The collapse is not uniform. Angular momentum must be preserved, so as the
size scale of the cloud decreases ∼7 orders of magnitude, it must spin 7 times
faster! It seems that most molecular clouds are very slowly rotating, providing
initial angular momentum.

As it collapses, an accretion disk forms that provides material to the growing
star. As the star accretes mattter, jets form perpendicular to the disk. The
system is now known as a “T Tauri” star, after its namesake.

Pre-Main Sequence Evolution

With a protostar still getting its energy from gravitational collapse, the opacity
in the outer layers increases, due to the H− ion. This causes the protostar to
become convective and to lose luminosity. This phase is known as a “Hayashi
track.”
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We can derive the location of the Hayashi tracks on the H-R diagram. Let’s
assume our usual polytrope

P = Kργ = Kρ1+1/n (22)

We had a definition of K in the derivation of the Lane-Emden equation:

Kn = CnGnMn−1R3−n , (23)

where Cn =
4π

(n+1)2
Rn−3n
Mn−1
n

. We can also say

L = 4πR2σT4eff , (24)

where Teff is the effective temperature of the photosphere. We need an equa-
tion that relates the pressure. We have hydrostatic equilibrium, which gives
us

PR =
GM

R2

∫ ∞

R
ρdr , (25)

where the integration is from R to ∞, where the pressure vanishes. We can
recast the RHS using the definition of opacity, which can be modeled as (at R)

κ = κ0ρRT
b
eff (26)

and since at the photosphere, τ = 1 =
∫

κρds,

κ0ρRT
b
eff

∫ ∞

R
ρdr = 1 (27)

and therefore

PR =
GM

R2κ0
ρ−1R T−beff . (28)

Whew! This gives us a set of four equations, which we can solve to get a
relationship between luminosity, mass, and temperature. Our book does so to
get

log L = A logTeff + B logM + constnt , (29)

with A and B being constants that depend on the polytropic index and  and b
from before. The book notes that the signs of A and B are opposite.

The Hayashi tracks are the pre-main sequence paths a star makes. Thus A and
B tell us how this star looks in an H-R diagram. At low mass, A is large and B is
small, and the Hayashi tracks are almost vertical. At higher mass A is smaller
and B is more negative, leading to diagonal lines in the H-R diagram.

Eventually, the protostars begin fusion, and are officially stars. EXCEPT for
“brown dwarfs,” which never reach high enough temperatures for fusion. Stars
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Figure 1: Pre-main sequence evolution. The red lines are not the evolution of
individual stars, but rather show discrete ages. High mass stars evolve more
quickly onto the main sequence.

then move to higher temperature at about the same luminosity. This limit is
at a mass of 0.072 M⊙. Together with the Eddington limit, this sets the mass
range that stars can have.

Once stars begin fusion, they are on the main sequence. When they first reach
the main sequence, they are on what is called the “zero-age main sequence.”
Stars continue to evolve a bit on the main sequence, and the zero-age main
sequence is their starting point.

The Initial Mass Function (revisited)

Massive stars are rare, and low mass stars are common. The stellar birth rate
is given by the “initial mass function,” or IMF.

We can see from the IMF that the most common mass is around 0.5 M⊙ and the
numbers decrease at lower and higher masses (only for logarithmic bins! For
linear, the distributions are ∼flat below ∼ 0.5 M⊙. Note that this is the initial
mass! To get the present-day mass function, we have to account for stellar
lifetimes, and as we’ll see, low-mass stars live for a long time.

We can define the number of stars formed at a given time within a given vol-
ume with masses from M to M + dM as

dN = (M)dM (30)
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Figure 2: The initial mass function as derived by various authors. Note that the
binning is logarithmic - for linear bins, there is no peak in the distributions.

The birth function (M) can be determined empirically. At high masses,

(M) ∝ M−α . (31)

We can also define the initial mass function ξ(M) as the amount of mass locked
up in stars with masses from M to M + dM:

ξ(M) = M
dN

dM
(32)

and therefore

ξ(M) ∝
�

M

M⊙

�−α+1

(33)

Like many things stellar, α depends on the mass. At the high-mass end, we find
agreement between authors that α = 2.35. This was first derived by Salpeter
(1955) and the initial mass function of this form sometimes bears his name.

We can use the IMF to compute the amount of mass returned to the ISM. Let ζ
be the mass initially locked up in shars in the range Mmin to Mmx

ζ =
∫ Mmx

Mmin

MdN
∫ Mmx

Mmin

ξ(M)dM . (34)

The fraction returned, R will depend on the mass range. Massive stars have
R = 1. Stars with M < 8M⊙ have R = (R − RWD)/R. And stars with M < 0.7M⊙
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have R = 0 because they have not lived long enough. The mass return is
therefore

η =
∫ Mmx

Mmin

ξ(M)R(M)dM (35)

The fractional mass returned is η/ξ, which our book finds is about 1/3.

We can also estimate the number of stars of a given type if we know the
maximum mass of such stars.

NMS =
∫ Mtp

Mmin

dN =
∫ Mmx

Mmin

(M)dM . (36)

Main Sequence Evolution

Stars spend 80-90% of their lifetimes on the main sequence where they happily
convert hydrogen into helium.

Our book, Chapter 7, deals with stellar evolution during the main sequence
hydrogen burning phase by discussing zones on the logT, logρ plane. This is
an interesting way to examine stellar evolution. All processes in stars have
characteristic temperature and density ranges.

First, we can define zones based on the equation of state. We have three
main equations of state, for ideal gas P = K0ρT, for electron degenerate gas
P = K1ρ5/3, and for relativistic electron degenerate gas P = K2ρ4/3. We also
have radiation dominated stars with P = 1/3T4.

By equating these, we can arrive at dividing lines in the logT, logρ plane. To
separate relativistic degenerate from degenerate gas,

K1ρ5/3 = K2ρ4/3 (37)

so

ρ =
�

K2

K1

�3

. (38)

Since these are constants, it’s a horizontal line in the logT, logρ plane. For
degenerate and ideal gas

K1ρ5/3 = K0ρT (39)

So this is a diagonal line.

ρ =
�

K0

K1

�3/2

T3/2 (40)

Finally, between radiation and ideal

K0ρT = 1/3T4 (41)
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gives us another diagonal line

ρ = 1/3K−10 T3 (42)

Zones of nuclear burning

We had before that
q = q0ρmTn . (43)

For most nuclear burning processes m = 1 (triple alpha being the main excep-
tion) and m >> 1. Thus, in the logT, logρ plane, nuclear burning is mostly
vertical lines.

Evolution of a Main Sequence Star

Eqns of Stellar Structure

We know from before that the central pressure:

Pc = C
M2

R4
(44)

The ideal gas law implies that

Tc = C
μmH

kρ

M2

R4
(45)

If we let R =
�

3M
4πρ̄

�1/3
then:

Tc = C
�

4π

3

�4/3 μmH

k
M2/3ρ̄1/3 (46)

From radiative diffusion:

L = −
64πσr2

κρ
T3

dT

dr
(47)

Approximating dT/dr ∼ T/R, then:

L ∝
RT4

κρ
(48)
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If we adopt the Kramers opacity κ = κ0ρT−3.5:

L ∝
M5.53ρ0.166μ7.5

κ0
(49)

Since M is constant, and there is a low dependence on ρ (which is probably
also close to constant in time):

L(t)

L(0)
=
�

μ(t)

μ(0)

�7.5

(50)

The result is that as Hydrogen is converted into Helium, the Sun becomes more
luminous. Early on, it was 25% less luminous.

log T log ρ

We can be a little more rigorous if we take the polytropic models from before.
In Chapter 5, we had

Pc = (4π)1/3BnGM2/3ρ4/3c , (51)

where the “c” subscripts denote central quantities. If we use the ideal gas law,
we can determine the relationship between density, mass, and temperature:

ρc =
K30

4πB3nG
3

T3c
M2

. (52)

For a star of a given mass, the central density varies as the central tempera-
ture cubed. In the logT, logρ plane, this relation is a straight line of slope 3.
Therefore, stars cannot move along arbitrary paths in the logT, logρ plane.

If the star becomes relativistic, there is no temperature dependence because
the equation of state has changed:

ρc = 4π
�

BnG

K1

�3

M2 , (53)

which is a horizontal line in the logT, logρ plane.

We can define the main sequence as following a straight line in the H-R dia-
gram:

log L = α logTeff + constnt (54)

Our book does some algebra of the main equations of stellar structure to arrive
at

L1−
2(n−1)
3(n+3) ∝ T4eff , (55)
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where n is the temperature dependence index for nuclear fusion (not the poly-
tropic index). Therefore,

log L =
12(n + 3)

3(n + 3) − 2(n − 1)
logTeff + constnt =

12(n + 3)

n + 11
logTeff + constnt .

(56)
For the proton-proton chain with n = 4, α = 5.6. For the CNO cycle with n = 16,
α = 8.4. This accounts for the changing slope of the main sequence.

As we saw when discussing the Sun, stars are fairly stable over their main se-
quence lifetimes in terms of their luminosities, radii, and temperatures. Stars
do change their energy output slightly throughout their lives (their tempera-
tures change less). Thus, they move upward on the H-R diagram throughout
their lives. The physical mechanism is that as stars deplete their H in favor
of He, the mean particle mass μ increases. Thus gravity becomes stronger,
the core contracts, fusion increases, and the overall radius (which is set by the
balance between thermal pressure and gravitational) increases. Stars convert
hydrogen into helium in their cores. This process increases the mean particle
mass. From the ideal gas law,

P =
ρkT

μmH
, (57)

we see that increases in mass per particle must be compensated by the tem-
perature or the density going up. Both of these will necessarily increase the
reaction rates, leading to an increase in luminosity. The strong dependence of
the P-P chain on the energy output increases the luminosity for small changes
in temperature.

Figure 3: Evolution of the Sun on the Main Sequence.
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Post-main sequence evolution

This evolution has some basic principles that we already know well:

• Stars lose mass, and therefore fuel, via fusion

• This loss of fuel reduces the central pressure

• reduced pressure causes the star to contract

• A contracted star may have other fusion processes available.

• These other fusion processes may lead to more central pressure, increas-
ing the luminosity and size of the star.

Additionally, more massive elements tend to “sink” toward the center, increas-
ing the metallicity there.

The evolution of stars differs dramatically for stars of different masses. The
dividing mass between two different evolutionary sequences is about 8 M⊙.
All post-main-sequence evolution begins when stars run out of hydrogen in
their cores. A star can have hydrogen outside the core that is not available
for fusion (because the temperature is too low) and this same evolutionary
sequence will begin.

Low-mass (M < 8 M⊙) Main Sequence Evolution

Eventually, stars run out of hydrogen in their cores. Stars still are plenty hot
enough for fusion, but without hydrogen, they have trouble doing fusion in
their cores. For instance, the triple-alpha process requires temperatures un-
reachable by stars on the main sequence, and without hydrogen, both P-P and
CNO are not possible. Thus the core shrinks, giving off energy transformed
from gravitational potential. The luminosity increases.

Now imagine that the central core of the star is depleted in Hydrogen, and that
fusion is taking place primarily in a shell surrounding the central core. What
happens to the central core?

Let us consider the virial theorem for a shell. Now, we have a virial theorem
similar to that which we considered for clouds and cores with an internal and
external pressure (see Lecture 4 equations, Section 2).

∫ Vc

0
PdV = PsVc +

1

3
α
GM2c
Rc

(58)

14



Now assume an isothermal gas where P = ρkT/μmH. Dividing by the volume,
we get

Ps =
3

4π

kT

μmH

Mc

R3c
−
αG

4π

M2c
R4c

(59)

If we set Ps = 0, we get a minimum radius:

R0 = α
μmH

3k

Mcμc

Tc
(60)

Below this radius, there is no stable configuration. However, if there is external
pressure, we can find a maximum value of Ps, by finding out where dPs/dRc =
0. At this point:

0 = −
9

4π

kT

μmH

Mc

R4c
+
αG

π

M2c
R5c

(61)

Giving the solution:

R1 =
4αG

9R⋆

Mcμc

Tc
(62)

Thus, if R < R0, the core is unstable if the pressure was 0. If there is an external
pressure, the core is unstable if R < R1. It is stable for R > R1. At R1, there
is a maximum in the pressure where if the pressure is exceeded, the core will
collapse. By substituting this back into the equation for Ps, we get

Ps,max(Mc) = C1
T4c

M4cμ
4
c

(63)

The surrounding pressure is due to the weight of the envelope. We can esti-
mate it using the equation of hydrostatic equilibrium (assuming Mc < M⋆):

dP

dm
=
∫ M⋆

0

Gm

4πr4
dm (64)

Since r < R, where R is the radius of the star, we get the inequality:

Penv >
∫ M⋆

0

Gm

4πR4
dm =

GM2
⋆

8πR4
⋆

(65)

Thus, the core is unstable if

Ps,max(Mc) = C1
T4c

M2cμ
4
c

≥
GM2

⋆

8πR4
⋆

(66)
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Now, we can use the equation

Tc = C2
μenvmH

k

GM⋆

R⋆
(67)

giving the final relationship

Mc

M⋆
≤ C3
�

μenv

μc

�2

(68)

Schönberg and Chandrasekhar derived that C3 = 0.37.

What are μenv and μc? Let us assume that the envelope is dominated by
Hydrogen, while the core is dominated by Helium. The total value of μ is given
by:

1

μ
=

1

μe−
+

1

μion
≈
3 + 5X

4
(69)

This gives us μenv = 0.6 and μcore = 1.33.

The critical ratio is when the mass of the Helium approaches the size:

Mc

M⋆
≤ 0.37
�

0.6

1.33

�2

∼ 0.1 (70)

Thus, when 10% of the Hydrogen is converted into Helium, the star becomes
unstable. At this point, it enters the Red Giant phase.

This situation has a problem: the core is no longer producing radiation and
therefore a significant source of pressure is removed. There is still thermal
pressure, but no radiation pressure. If we are to prevent the collapse of the
core, we need an additional source of pressure - degeneracy!

Evolution off the Main Sequence

After core contraction, stars begin fusion in a shell around their cores. This re-
action actually produces more energy than the stars did on the main sequence
lives, moving them upward on the H-R diagram. Much of this energy does
not make it out of the star, increasing its radius and lowering its temperature.
Stars therefore move to the right in the H-R diagram. The stellar cores are
made up of the byproducts of fusion, the “ash.” This material sinks toward the
core.
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Figure 4: H-R diagram

Subgiant Branch

Eventually the core contracts enough that the outer layers of the core at at
a temperature high enough to sustain fusion. This phase is known as the
“subgiant branch.” During the subgiant branch, the luminosity is higher than it
was on the main sequence. H shell burning produces more energy than H core
burning. Throughout the subgiant branch, the star’s temperature decreases
and its radius increases. These effects nearly offset so the luminosity is stable.

Red Giant Branch

With the decrease in temperature, there are more H− ions formed in stars’
photospheres. This leads to a high opacity and a further lowering of the tem-
perature. As a result, convection takes over as the dominant energy transport
method (d lnP/d lnT ≲ 2.5). This convective zone starts at the surface and
reaches deep into the stellar interiors, down to the hydrogen burning shell.
The energy transport is so efficient that the luminosity skyrockets. This is
known as the “red giant branch.”

The transport of materials is known as the “first dredge up.”
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Figure 5: Main sequence and post-main sequence evolution of stars.
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Figure 6: Evolution off the main sequence for 1 (left) and 5 M⊙ (right) stars.

Red Giant Tip

Eventually the central temperature and pressure are high enough to fuse he-
lium nuclei through the triple-alpha process. Some C is fused with He to make
O at this stage.

Initially, most of the energy still comes from H shell fusion, but the triple alpha
process quickly expands the core due to its extreme energy output. This cools
the H shell to the point where it cannot create significant energy. Removed of
its main fusion source, the star decreases in luminosity.

Helium Flash

Stars with masses less than 1.8 M⊙ create electron-degenerate cores. Sur-
prisingly, their cores are at lower temperatures than the material outside at
higher radius. This happens because the neutrinos from the core carry away
significant energy.

Eventually, the core reaches a temperature and pressure great enough for the
triple-alpha process. This releases tons of energy all at once, equivalent to
the luminosity of an entire galaxy. The “helium flash” only lasts a few seconds
though.

Evolution beyond the helium flash is difficult to predict, and so stellar models
sometimes momentarily stop here.

Stars with masses greater than 1.8 M⊙ do not have a helium flash.
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The Horizontal Branch

The core at this point contracts, increasing the energy output. The tempera-
ture also increases, leading to evolution blue-ward. This is called the “horizon-
tal branch.”

Eventually, all the He in the core has been converted into C and O. The star at
this point contracts and reddens.

The contracting core leads to a dual-shell burning phase on the horizontal
branch, with nested shells of hydrogen and helium burning.

Early Asymptotic Giant Branch

The “Early Asymptotic Branch” is the dual shell burning phase, although the
He shell is doing all the energy output. At this point the luminosity rises and
the temperature decreases, analogous to what happens in the H shell burning
phase.

Once again, convection takes over in the outer layers, leading to a “second
dredge up.”

Thermal-Pulse Asymptotic Giant Branch

Now the hydrogen burning shell has reignited. Yay! But the helium shell is run-
ning out of fuel. The hydrogen shell is dumping its helium ash onto the helium
shell. This results in intermittent explosions of He fusion, leading to pulsations.
The He runs out again and the process repeats, leading to pulsations.

Due to the fact that their atmospheres are tenuously bound, AGB stars lose
significant fractions of their mass, up to 10−4 M⊙ per year. AGB stars are a
significant source of dust production in the Universe.

One class of such AGB stars are known as long-period variables (LPVs). LPVs
have pulsation periods of 100 to 700 days.

Post-AGB Evolution

The evolution of stars post-AGB is heavily dependent on the initial mass. Stars
with M < 8 M⊙ will go on to form planetary nebulae and white dwarfs. Stars
with M > M⊙ will go supernova (more on this later).

The extreme mass loss exposes the stellar core, moving the stars leftward on
the H-R diagram. Pulsations contribute to the mass loss as more mass is lost
at each pulsation.
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Figure 7: The binding energy curve.

Eventually, the core is completely exposed. This core is composed of carbon
and oxygen, and is known as a “white dwarf.”

Planetary Nebulae

The term “planetary nebula” is a misnomer, because they have nothing to
do with planets. Instead, they are the layers of material expelled during AGB
pulsations that remain around white dwarfs.

Expansion speeds of planetary nebulae are typically 10-30 kms−1. Sizes are
∼ 0.3pc. Lifetimes are just 104 years before a planetary nebula fades back
into the interstellar medium.

We now have a good understanding of what happens to stars of stellar mass <
8M⊙. Stars with masses > 8M⊙ initially follow a similar evolutionary sequence,
but then they quickly diverge.

Massive Star Evolution

Lower mass stars end their lives with double-shell burning, building up a core
composed of carbon and oxygen. If you remember the binding energy curve,
elements up to iron can fuse to release energy. Why don’t low mass stars con-
tinue to fuse heavier elements? They do not have the requisite temperatures
in their cores.

Massive stars, however, can continue fusing heavier and heavier elements
until they reach iron. During this advanced fusion, the stars evolve off the
main sequence, as do lower mass stars, although high-mass stars do so at
about the same luminosity through all their later phases. They form successive
layers of non-burning H, fusing H, fusing He, fusing C, fusing O, fusing Ne,
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fusing Mg, fusing Si, and inert iron. You will notice that the atomic mass of the
fusion elements in the inner shells differ from one another by atomic number 2.
This is because the most efficient fusion reaction with these elements involves
alpha particles.

This successive fusion produces less and less energy (look at binding energy
curve). As a result, stars go through these evolutionary sequences really fast.
Your book notes that if the MS lifetime is 107) years, He burning is 106 years,
carbon burning is 300 years, oxygen burning is 200 days, and Si burning is
only two days.

During this multiple-shell burning phase, the iron ash accumulates in the core.
Ash accumulates in the other layers to but is burned off. Iron doesn’t produce
energy via fusion, and eventually the star goes supernova. More on super-
novae later.

Types of Evolved Massive Stars

Before a star goes supernova, it goes through distinct evolutionary phases,
many of which are named.

Luminous Blue Variables (LBVs)

LBVs are extremely massive, nearly 100 M⊙. The most famous example is η
Carinae. LBVs have tremendous mass loss of 10−3 M⊙ per year (the Sun’s is
10−14 M⊙ per year). Some of this mass loss is explosive, as was the “Great
Eruption” of η Car, which temporarily made it the second brightest star in the
sky. η Car’s mass loss has created the “homonculous,” a massive cloud of gas
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and dust that is expanding outward at 650 kms−1. https://www.youtube.com/watch?v=u5mZuCD-
gSY
https://www.youtube.com/watch?v=07hqULmszC8

Wolf-Rayet (WR) Stars

WR stars are less massive that LBVs, maybe only 20 M⊙. They are rapidly
rotating and are losing mass at a rate of > 10−5 M⊙ per year.

Unlike most stars, WR stars have strong (and broad) emission line spectra.
Where could the broadness come from? The emission line spectra have lines
of He, C, N, and O. Where could these come from? The H atmosphere of WR
stars is completely absent, having been stripped off. It is the processed layers
that are revealed, and they are enriched. We can separate WR stars into the
WN class, which has N and He emission lines, the WC class, which has C and
He, and the WO class, which has O (and is quite rare).

Other Evolved High-Mass Star Types

10 − 40 M⊙ stars will first evolve into Red SuperGiants (RSGs) immediately off
the main sequence. These are luminous, but red.

10 − 20 M⊙ stars will evolve through a Blue SuperGiant (BSG) phase that is
characterized by high luminosities and (relatively) blue colors.

> 40 M⊙ stars will evolve into Of stars, which are like O stars but have emission
lines.

Supernovae (SN)

All good things must come to an end, and so too must a massive star’s life
end. In keeping with their “live fast, die young” mantra, they go out with a
bang, as a SN.
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There are type main types of supernova, designated (confusingly) as Type 1a
and “Other” (other Type 1s and Type IIs). We will here be dealing with the
Other category. These arise from core-collapse.

Eventually, fusion of Fe ceases, removing a source of pressure in the cores.
Then the gravitational pressure becomes too great to be opposed by electron
degeneracy pressure in the core, and the core will collapse in on itself. The
layers just above the core are then drawn into a high temperature region and
fusion takes place in these layers violently, leading to a SN explosion. These
leave behind a supernova remnant, SNR. The SNR is the entirety of the star,
minus the iron core which can turn into a neutron star or black hole. SNRs
therefore enrich the interstellar medium. We are all made of stars!
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