ASTR702 Final Review Topics

Equations to memorize

$$F = \frac{L}{4\pi d^2} \tag{1}$$

$$d = \frac{1}{p['']} \operatorname{pc} \tag{2}$$

$$L = L_{\odot} \left(\frac{M}{M_{\odot}}\right)^{\alpha} (\alpha \simeq 4) \tag{3}$$

$$m_1 - m_0 = -2.5 \log_{10}(F_1/F_0) \tag{4}$$

$$\frac{F_1}{F_0} = 10^{0.4(m_0 - m_1)} \tag{5}$$

$$M_1 - M_0 = -2.5 \log_{10}(L_1/L_0) \tag{6}$$

$$\frac{L_1}{L_0} = 10^{0.4(M_0 - M_1)} \tag{7}$$

$$m - M = 5\log d - 5 \tag{8}$$

$$\lambda_{\max} = \frac{0.2898}{T(K)} \text{ cm}$$
(9)

$$L = A\sigma T^4 \tag{10}$$

$$\tau_{\nu} = \int \kappa_{\nu} \rho ds \tag{11}$$

$$\frac{dP}{dr} = -G\frac{M_r\rho(r)}{r^2} = -\rho g \tag{12}$$

$$\frac{dM_r}{dr} = 4\pi r^2 \rho(r) \tag{13}$$

$$\tau_{ff} \propto (G\rho)^{-1/2} \tag{14}$$

$$\lambda = \frac{1}{n\sigma} \,, \tag{15}$$

$$t \simeq \frac{1}{n\sigma v} \,, \tag{16}$$

$$\Omega = \alpha \frac{GM^2}{R} \,. \tag{17}$$

$$P = nkT. (18)$$

$$P_{\rm rad} = 1/3aT^4 \,. \tag{19}$$

$$P = K_a \rho^{(\phi+1)/\phi} = K_a \rho^{\gamma_a} , \qquad (20)$$

$$\kappa = \kappa_0 \rho^a T^b \,, \tag{21}$$

$$P = K \rho^{\gamma} \,, \tag{22}$$

with $\gamma = 1 + 1/n$ and different values of K for different equations of state.

Lane-Emden is below, but I expect you to know

$$\rho = \rho_c \theta^n \tag{23}$$

$$\xi = r/\alpha \,. \tag{24}$$

$$\frac{m_1}{m_2} = \frac{a_2}{a_1},$$
(25)

$$P^2 = \frac{4\pi^2}{G(M+m)} a^3,$$
(26)

Equations I would give you

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$
(27)

$$B_{\lambda} = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} \tag{28}$$

$$f(v) = \sqrt{\left(\frac{m}{2\pi kT}\right)^3} 4\pi v^2 e^{-\frac{mv^2}{2kT}}$$
(29)

$$\frac{n_i}{n_j} = \frac{g_i}{g_j} e^{-E_{\rm ij}/k T_{\rm ex}} \tag{30}$$

$$\frac{n_{i+1}n_e}{n_i} \simeq 2\left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} \frac{g_{i+1}}{g_i} \exp\left[-\frac{\Phi_r}{kT}\right]$$
(31)

$$\frac{dL_r}{dr} = 4\pi r^2 \rho \epsilon \tag{32}$$

$$\frac{dT}{dr}_{\rm rad} = -\frac{3}{4ac} \frac{\bar{\kappa}\rho}{T^3} \frac{L_r}{4\pi r^2} \tag{33}$$

$$P_{\rm e,deg} = K_1^{\prime} \left(\frac{\rho}{\mu_e}\right)^{5/3}, \qquad (34)$$

$$P_{\rm e,deg} = K_2 \left(\frac{\rho}{\mu_e}\right)^{4/3}, \qquad (35)$$

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n \,. \tag{36}$$

$$\left|\frac{dT}{dr}\right|_{*} < \left(\frac{\gamma_{a}-1}{\gamma_{a}}\right)\frac{T}{P}\left|\frac{dP}{dr}\right|_{*}$$
(37)

$$M_{\rm Ch} = \frac{M_3 \sqrt{1.5}}{4\pi} \left(\frac{hc}{Gm_H^{4/3}}\right)^{3/2} \mu_e^{-2} = 5.83 \mu_e^{-2} M_{\odot}$$
(38)

$$L < \frac{4\pi cGM}{\kappa} \tag{39}$$

$$M_J = \left(\frac{5kT}{G\mu}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2} \tag{40}$$

$$R_J = \sqrt{\frac{15kT}{4\pi G\mu\rho}}\,.\tag{41}$$

$$M_V = -2.81 \log_{10} P_d - 1.54 \,, \tag{42}$$

$$\Pi \approx 2 \int_0^R \frac{dr}{c_s} \approx 2 \int_0^R \frac{dr}{\sqrt{2/3\gamma \pi G\rho (R^2 - r^2)}} \approx \sqrt{\frac{3\pi}{2\gamma G\rho}} \propto 1/\sqrt{\rho} \,. \tag{43}$$

$$T_c(t) = T_0 \left(1 + \frac{5}{2} \frac{t}{\tau_0} \right)^{-2/5} , \qquad (44)$$

$$L(t) = L_0 \left(1 + \frac{5}{2} \frac{t}{\tau_0} \right)^{-7/5} , \qquad (45)$$

$$v^2 = GM\left(\frac{2}{r} - \frac{1}{a}\right) \,. \tag{46}$$

$$T = \left(\frac{GM_1\dot{M}}{8\pi\sigma R^3}\right)^{1/4} \left(\frac{R}{r}\right)^{3/4},\tag{47}$$

Topics

Stars

Ranges for physical properties Spectral types Lifetimes H-R diagram

Units

Parallax Apparent and absolute magnitudes

Blackbodies

Radiative transfer Colors and blackbodies

Stellar Equations

LTE Mass conservation Hydrostatic equilibrium The Virial Theorem Gravitational Potential Timescales

Gas Physics

Equations of state The pressure integral Various pressures and when they are applicable Ionization state (Saha) Electronic state (Boltzmann) The adiabatic exponent Opacity The temperature gradient

Fusion

Computing reaction rates Proton-proton, CNO, triple alpha, with temperature scalings r– and s–processes

Stellar Models

Polytropic models with values for γ and nLane-Emden relation Chandrasekhar mass Eddington luminosity

Stellar Stability

Dynamical Equilibrium Thermal Equilibrium When do we have instabilities? Convection and when it dominates over radiation

Stellar Evolution

Star Formation process Jeans radius and mass from hydrostatic equilibrium and Virial Bonner-Ebert spheres Hayashi tracks The initial mass function Main sequence evolution Post-main sequence evolution for > 8 and < 8 M_{\odot} stars including elements produced and tracks on H-R diagram

Stellar Pulsations

Types of variable stars and characteristic pulsation periods Cepheids and the period-luminosity relationship κ and γ mechanisms

Compact Objects

White dwarfs: origin, composition, temperatures, luminosities, types, cooling Nuetron stars: radii, rotation rates, magnetic field strengths Pulsars: relationship between spin down rate and luminoty Black holes: basic physics, Schwartschild radius, gravitational redshift and time dilation Supernovae: types, core collapse vs WD, evolutionary phases Rankin-Huginot conditions

Binaries

Types What we can learn from visual, spectroscopic, and eclipsing binaries Lagrangian points Accretion disks Novae and supernovae