
ASTR367 - Star Formation

C+O Chapter 12

Stars have to form somehow, because stars exist. The formation of stars must involve collapse
of a molecular cloud. These clouds have mean densities of ∼ 103 cm−3 or so, and sizes of
about a parsec (∼ 1018 cm). They must collapse down to ∼ 1011 cm (the size of a star), with
densities of ∼ 1024 cm−3 (the mean density of a star).

When does this collapse occur? When gravity overcomes pressure. The condition where
gravity and pressure are in balance is of course called “hydrostatic equilibrium.” One treat-
ment says that a cloud not in hydrostatic equilibrium that will collapse has a characteristic
size of the “Jeans radius” and mass of the “Jeans Mass” (the condition of instability is the
“Jeans Instability”). We will derive these quantities first from the hydrostatic equilibrium
condition. We will also do the same derivation using the Virial theorem.

Jeans Mass from Hydrostatic Equilibrium [Following Wikipedia
page]

The Jeans mass is named after the British physicist Sir James Jeans, who considered the
process of gravitational collapse within a gaseous cloud. He was able to show that, under
appropriate conditions, a cloud, or part of one, would become unstable and begin to collapse
when it lacked sufficient gaseous pressure support to balance the force of gravity. The cloud
is stable for sufficiently small mass (at a given temperature and radius), but once this critical
mass is exceeded, it will begin a process of runaway contraction until some other force can
impede the collapse. He derived a formula for calculating this critical mass as a function of
its density and temperature. The greater the mass of the cloud, the smaller its size, and the
colder its temperature, the less stable it will be against gravitational collapse.

Hydrostatic equilibrium is:
dP

dr
= −Gρ(r)Mr

r2
, (1)

where Mr is the enclosed mass, P is the pressure, ρ(r) is the density of the gas at r, G is the
gravitational constant and r is the radius. The equilibrium is stable if small perturbations
are damped and unstable if they are amplified. In general, the cloud is unstable if it is either
very massive at a given temperature or very cool at a given mass for gravity to overcome
the gas pressure.

Let’s say we have a spherical molecular cloud cloud of radius R, mass M , and sound speed
cs. Compression of this region can only proceed at approximately the sound speed, which
gives a characteristic time of:

tsound =
R

cs
(2)
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for sound waves to cross the region. Gravity will attempt to contract the system even further,
and will do so on a free-fall time,

tff =

√
3π

32Gρ
. (3)

(This is sometimes given as tff =
√

3
2πGρ

, from a simpler treatment. t ≈ (Gρ)−1/2 is the

characteristic time for many processes in astrophysics. This is a good starting guess for many
time scales.) We have collapse when tff < tsound. In this case, the collapse is fast enough that
the cloud cannot re-establish equilibrium, which takes place over the timescale given by the
sound speed.

It is worth taking a slight detour here to describe how long these free fall times are. For
large scales, the growth time for the Jeans instability is

τJ ' 2.3× 104yr

(
106 cm−3

nH

)1/2

(4)

For nH = 1000 cm−3, this is about 0.7 Myr. Free fall time (collapse timescale for a pressure-
less gas) is:

τff =

(
3π

32Gρ0

)1/2

= 4.4× 104 yr

(
106 cm−3

nH

)1/2

(5)

For nH = 1000 cm−3 this is 1.4 Myr - slightly longer than growth time.

OK, back to the Jeans mass and radius. The resultant Jeans radius RJ is therefore:

λJ '
cs√
Gρ

(6)

The speed of sound is

cs =

√
γP

ρ
, (7)

where γ is the adiabatic index, which is 7/5 for molecular gas and 5/3 for monotonic gas.
The pressure P = nkT = ρ/µkT assuming an ideal gas, with mean molecular mass µ, so we
have

RJ '

√
kT

Gµρ
. (8)

The real definition gives a factor of order unity out front:

RJ '

√
15kT

4πGµρ
' (0.4 pc)

(
cs

0.2 km s−1

)( n

103 cm−3

)−1/2

. (9)

All scales larger than the Jeans length are unstable to gravitational collapse, whereas smaller
scales are stable.
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Perhaps the easiest way to conceptualize Jeans Length is in terms of a close approximation,
in which we rephrase ρ as M/r3. The formula for Jeans’ Length then becomes:

RJ ≈

√
kBTr3

GMµ
, (10)

and therefore RJ = r when kT = GMµ
r

. In other words, the cloud’s radius is the Jeans
Length when thermal energy per particle equals gravitational work per particle. At this
critical length the cloud neither expands nor contracts. It is only when thermal energy is not
equal to gravitational work that the cloud either expands and cools or contracts and warms,
a process that continues until equilibrium is reached.

We can recast this in terms of the “Jeans mass”:

MJ =

(
4π

3

)
ρR3

J =

(
5kT

Gµ

)3/2(
3

4πρ

)1/2

' (2 M�)

(
cs

0.2 km s−1

)3 ( n

103 cm−3

)−1/2

.

(11)
The Jeans mass MJ is just the mass contained in a sphere of radius RJ . It is useful to
remember that MJ ∝ T 3/2ρ−1/2. Thus, stars can form most efficiently (when mass is low) in
low temperature, high density locations where the Jeans mass is not as great.

The above is an illustrative and wrong derivation! Jeans assumed that the collapsing region
of the cloud was surrounded by an infinite, static medium. The pressure in hydrostatic
equilibrium is therefore less than that required, and the mass is therefore too high. We will
fix this problem below.

A larger issue is that because all scales greater than the Jeans length are also unstable to
collapse, any initially static medium surrounding a collapsing region will in fact also be
collapsing. As a result, the growth rate of the gravitational instability relative to the density
of the collapsing background is slower than that predicted by Jeans’ original analysis. This
flaw has come to be known as the “Jeans swindle”.

The Jeans Mass from the Virial Theorem

We haven’t discussed the Virial Theorum yet, but it is covered in your book, Chapter 2.
The Virial Theorum says that for gravitationally bound systems in equilibrium, the total
energy is one-half of the time-averaged potential energy. The gravitiationally bound aspect
is important. If the system is not gravitationally bound, the Virial Theorem will not hold.
Such cases give rise to contraction or expansion.

We can also derive the Jeans mass using the Virial theorem. Like the condition of hydrostatic
equilibrium, the Virial theorem describes a system in equilibrium. If the kinetic energy of
a system is K and the gravitational potential energy is U , the simplest incarnation of the
Virial theorem says that 2K+U = 0. An expanding gas cloud will have more kinetic energy
than needed (2K > −U) and a contracting cloud will have more gravity (2K < −U).
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Each particle in a gas cloud has kinetic energy, E = 3/2kT , so the total kinetic energy
K = ΣN

i Ei = 3/2NkT , where N is the number of particles. Easy!

The gravitational potential energy in spherical shell of mass dm is

dU = −GMrdm

r
. (12)

From mass conservation, we know

dm = 4πr2ρdr . (13)

Putting these two expressions together, we find

dU = Mr4πrρdr . (14)

We can integrate this from 0 to R to get the gravitational potential, but not if we don’t
know how ρ and Mr depend on r. For a constant density sphere,

ρ ' ρ̄ =
M

4/3πR3
(15)

so
Mr ' 4/3πr3ρ̄ . (16)

The integral then gives

U ' −3

5

GM2

R
, (17)

which is the gravitational potential for an “isothermal” sphere.

Therefore,

3NkT = −3

5

GM2

R
. (18)

We can replace N = M/µ , with µ the mass per particle, and R = (3M/4πρ)1/3 to get

MJ =

(
5kT

Gµ

)3/2(
3

4πρ

)1/2

(19)

The same as before!

Fragmentation

Of course this is a simplification – a single cloud does not collapse down to r = 0. What
happens to complicate the collapse? As the cloud collapse, density rises. Since the collapse
is isothermal, a rising density means the Jeans mass of the cloud is falling, so small pieces
of the cloud start to collapse on their own. A rising density also means a declining free fall
time, so these small dense clumps collapse faster than the overall cloud.
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Instead of one giant cloud undergoing a monolithic collapse, the cloud fragments into small
collapsing pieces. So what stops this fragmentation? As the density rises, the opacity rises.
At some point during the collapse and fragmentation process, the opacity rises high enough
that the energy created during the collapse is absorbed within the star itself – it begins to
heat up. Since the energy is not lost from the cloud, we call this an adiabatic collapse.
Higher temperature means higher pressures (the ideal gas law), which halt the free collapse
of the star. Since the cloud absorbs all the gravitational energy of collapse, it heats up, and
it starts to act like a blackbody.

At what mass does this happen? We can balance the rate of energy loss through gravitational
collapse to the rate at which the cloud radiates blackbody energy, and, solving for the mass,
we find M ≈ M�. In other words, collapse halts when the fragment masses reach star-like
masses.

Bonner-Ebert Spheres

In a more realistic scenario, the density is centrally peaked. In this case, the gravitational
energy is

U = −3

5
a
GM2

R
, (20)

where a > 1 for centrally peaked density profiles. Mouschovias & Spitzer (1976) find a ≈ 1.67
for numerical models of clouds on the verge of collapse.

In our above consideration of the Virial theorem, we neglected external pressure and magnetic
energy. If we consider the former, with the above modification to the gravitational potential,
we arrive at the “Bonner-Ebert mass” (Bonner 1956; Ebert 1957):

MBE(p0) =
225

32
√

5π

c4
s

(aG)3/2

1
√
p

0

= 0.26

(
T

10 K

)2(
106 cm−3 K

p0/k

)1/2

M� (21)

Remember how we said that the Jeans mass neglected some rather important things? Well,
the Bonner-Ebert mass is basically the same as the Jeans mass, MBE ≈ 1.18MJ . The 18%
change is due to the fact that the cloud itself affects the hydrostatic equilibrium assumption
before.

Given the typical temperature and pressures of molecular clouds, the Bonner-Ebert mass is
about a Solar mass, so it is probably no surprise that this is the peak of the IMF.

Of course we still neglect the magnetic fields. The magnetic energies are similar to the kinetic
energies, and so can contribute to the pressure.
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Figure 1: Pre-main sequence evolution

Formation of Actual Stars

During the formation of stars, cores more or less free-fall collapse. The free fall time depends
inversely on the density, so the central part collapses first, then the outer parts. What would
provide resistance? [Pressure of course!] What would pressure be unimportant? [Cooling
from molecular lines!]. This “cooling” of course releases energy that we can detect. This
energy peaks in the sub-millimeter to far-infrared. How much energy is liberated? Where
does it go?

Pre-Main Sequence Evolution

With a protostar still getting its energy from gravitational collapse, the opacity in the outer
layers increases, due to the H− ion. This causes the protostar to become convective and to
lose luminosity. This phase is known as a “Hayashi track.”

Eventually, the protostars begin fusion, and are officially stars. EXCEPT for “brown dwarfs,”
which never reach high enough temperatures for fusion. This limit is at a mass of 0.072 M�.
Together with the Eddington limit, this sets the mass range that stars can have.

Once star begin fusion, they are on the main sequence. When they first reach the main
sequence, they are on what is called the “zero-age main sequence.” Stars continue to evolve
a bit on the main sequence, and the zero-age main sequence is their starting point.

6


