
Cosmology (Chapters 29 and 30)

Cosmology is the study of the nature of the Universe, including its chronology (its beginning, evolution, and
eventual end). We have been introduced to some early versions of cosmology. For example, until the 1920s,
astronomers didn’t know if the Milky Way was the entire Universe.

Cosmology is the large-scale study of the evolution of the universe. A few hints about cosmology:
1) Olber’s paradox says that if the universe was infinite in space and time, why do we not see a star along
every line of sight? This after all is the situation for dense forests. One may be tempted to assume that
intervening dust gets in the way, but in that case the dust would heat up as hot as a star and also glow since
every line of sight would also contribute photons to its heating. The only solution is that the Universe is not
old enough for the light to have reached us along every sight line. The Universe must have a finite age.

2) Edwin Hubble found that the more distant a galaxy is, the larger its recessional velocity. This is known
as Hubble’s Law, v = H0d, with H0 being the Hubble constant, measured in km/s/Mpc. Hubble’s Law
implies that the Big Bang happened, because we can rewind time back to when all galaxies existed in the
same place.

Now we will begin to develop cosmology more scientifically. We start with the Cosmological Principle:
the Universe is homogeneous (same everywhere; the part of the universe we can see is a fair sample) and
isotropic (same in all directions; same physical laws apply throughout). Viewed on a sufficiently large scale,
the properties of the universe are therefore the same for all observers. In other words, the part of the universe
that we can see is a fair sample, and that the same physical laws apply throughout. In essence, this says
that the universe is knowable and is playing fair with scientists. This idea was first stated clearly by Isaac
Newton in Principia. A corollary to this is that we do not live in a special place in the Universe.

Universe Expansion

The Universe is expanding, and quickly. In the early 1900s, V.M. Slipher was measuring the redshift of
galaxies. These galaxies were not known to be external to the Milky Way, so it was especially surprising
when he found that all of them, with the exception of Andromeda, were redshifted. How does this work?
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where the “o” subscripts refer to the observed and “e” to emitted and z is the redshift (z = v/c). Here
we see wavelength or frequency shifts related to the recessional velocity. If the wavelength is decreasing or
the frequency is increasing, the velocity is positive. Note the difference in the order of subtraction. The
numerators are a matter of convention for optical astronomy. These are the non-relativistic formulae, for
when v � c.
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where β = v/c.
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Note that to actually measure redshift we need multiple identifiable spectral lines.

In 1925, Hubble discovered Cepheids in Andromeda, and established that it was external to the Milky Way.
Identifying Cepheids in other galaxies, and combining with Slipher’s velocities, he found that the redshift
was correlated with the distance:

v = H0d , (6)

where H0 is the Hubble constant. This is Hubble’s Law. Since v is in km s−1 and d in Mpc, H0 is in
( km s−1)/ kpc. We can therefore reduce it to units of 1/s.

Hubble understood that he had found evidence for the expansion of the universe. This was the birth of
modern cosmology.

What does Hubble’s Law mean? As long as we are not in a special place in the Universe (more on that
later), the expansion must happen everywhere at once. Imagine the Universe as the United States. If it
doubled in size in one second, from our vantage point locations 1000 km away would be 2000 km away, and
moving away at 1000 km s−1. Locations 2000 km away would now be 4000 km away and moving away at
2000 km s−1. We therefore see the expected relationship between v and d. This expansion does not affect
gravitationally bound systems like galaxies themselves, the Solar System, galaxy clusters, etc.

One of the real powers of using Hubble’s law is that we have another way of determining distances. In the
non-relativistic case,

d =
cz

H0
(7)

This should only be used for z < 0.13. Or for higher redshifts,

d ' v/H0 =
c

H0

(z + 1)2 − 1

(z + 1)2 + 1
(8)

The value of H0

H0 is simply the slope of the v vs d line. Why could that be? As we saw above, it’s tough to measure d. So
we can parameterize our ignorance:

H0 = 100h ( km s−1)/Mpc (9)

Hubble Time

We can move time backwards to determine an approximate age of the Universe. If the Universe is expanding
at H0, we can shrink it from its current size back to a single point, by H0. The time for this to happen is
the Hubble time, tH . We can find the Hubble time by taking 1/H0. If the Universe expanding at the same
rate throughout time, the Hubble time is the age of the Universe.

Value of H0

The Hubble constant is near 70 km s−1/Mpc, although different experiments find different values. The
Planck satellite found H0 is 67.3± 1.2 km s−1/Mpc.

There are many ways that astronomers have devised to determine H0. There are two main methods:

• Satellites can measure the fluctuations in the “Cosmic Microwave Background” (CMB) radiation. We’ll
talk about the CMB a lot later.

• We can measure the redshift of distant galaxies and then determine the distances to the same galaxies
(by some method other than Hubble’s law). The slope of the d vs. v relationship is H0.
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We will discuss the first method later. The second method is best measured with Type 1a supernova
remnants. Both the Super Cosmology Project and the High-Z Supernova Search Team, another team who
was doing the same research, expected to find that the universe is either expanding then contracting as
one way to explain the expanding universe idea or the universe must be expanding at a slow rate that will
slow over time. However, in January 1998, the Supernova Cosmology project presented evidence that the
expansion of the universe is not slowing at all and is in reality accelerating. In 2011, Riess and Schmidt of the
Super Cosmology Project, along with Saul Perlmutter of the Supernova Cosmology Project, were awarded
the Nobel Prize in Physics for this work.

The argument for this finding is a bit difficult, and we’ll return to it later but let’s walk through it here. For
each supernova, we have an expectation that the absolute magnitude is −19.3. We measure the apparent
magnitude and use the distance modulus to get the distance. We simultaneously measure the redshift and
can therefore make a plot of distance modulus (m−M) vs reshift. What does constant expansion look like
on this graph? Decelerating? Accelerating?

Day 2: A Model Universe

Topics: k, R, critical density ρc, density parameter Ω, geometries (flat, open, or closed)

Let’s develop a simple model for an expanding universe. If the cosmological principle is valid, we can replace
matter in the universe with simple, pressureless “dust.” This dust is not the same as ISM dust, but is simply
a way to illustrate the homogeneous matter distribution. There are no photons or neutrinos, just pressureless
matter.

Imagine a thin expanding shell of this dust of radius r(t) and mass m representing expansion of the universe.
The expansion speed is v(t) = dr(t)/dt. The total energy of the shell is constant. Therefore,

K(t) + U(t) = E (10)

1

2
mv2(t)−GMrm

r(t)
= −1

2
mkc2$2 (11)

Here Mr is the mass interior to the shell. The kinetic energy is positive (expansion) and is resisted by
negative potential energy. The total energy of the shell has a very strange form, and the additional variables
k (dimensions length−2) and $ (dimensions length). We can think of k as describing the geometry of the
Universe and $ as the current radius of the shell, so r(t0) = $. The negative sign in the potential energy
is because of our convention for k.

The interior mass Mr must remain constant, so

Mr =
4

3
πr3ρ(t) (12)

We can cancel m and substitute for Mr to get

v2 − 8

3
πGρr2 = −kc2$2 (13)

This is a profound result. If k is:

0: the expansion will continually slow down, asymptotically approaching an expansion velocity of zero.
It continues the initial expansion because of inertia. This is a flat universe.

< 0: the overall energy is positive and the universe is unbounded - the expansion continues forever. This is
an open Universe.
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> 0: the overall energy is negative and the universe is bounded - expansion will stop and reverse itself.
This is a closed Universe.

We can write that
r(t) = R(t)$ (14)

where R(t) is the scale factor that describes the expansion1. This makes sense because $ is the present
radius of the shell, and we define R = 1 at present. This scale factor is telling you about the size of the
Universe. If R > 1, the Universe is larger than the present day, and if R < 1, the Universe is smaller. We
can relate the scale factor to redshift:

R =
1

1 + z
(15)

For a pressureless universe, as the Universe expands, the total mass remains constant. Therefore, the quantity

R3(t)ρ(t) = R3
0(t)ρ0(t) = ρ(t) (16)

and
ρ(z) = ρ0(1 + z)3 (17)

This is valid only for our pressureless Universe, but the result is still a good one.

Evolution of Pressureless Universe We now want to see how our pressureless universe evolves with time.
We can begin with Hubble’s Law in a slightly revised form

v(t) = H(t)r(t) = H(t)R(t)$ (18)

but

v(t) =
dR(t)

dt
$ (19)

so

H(t) =
1

R(t)

dR(t)

dt
(20)

We can plug this in to our earlier expression for the energy balance, cancel the $2 term and get(
H2 − 8

3
πGρ

)
R2 = −kc2 (21)

A very important quantity comes directly out of this equation, that of the critical density when k = 0.
This is the exact amount of matter needed to balance the expansion.

ρc(t) =
3H2(t)

8πG
(22)

We see that the critical density evolves with time. The present value of the critical density

ρc,0 =
3H2

0

8πG
(23)

We can define a further important parameter, that of the density parameter

Ω =
ρ(t)

ρc(t)
=

8πGρ

3H2
(24)

which has a present value of

Ω0 =
ρ0(t)

ρc,0(t)
=

8πGρ0

3H2
0

(25)

1Some texts use a for the scale factor; we’ll follow the book’s notation here
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Therefore the density parameter tells us how close we are to the critical density. Finally, we can rewrite our
energy equation as (

H2 − 8

3
πGρ

)
R2 = −kc2 (26)

H2(1− Ω)R2 = −kc2 (27)

or at present

H2
0 (1− Ω0) = −kc2 (28)

Let’s now revisit our flat, open, and closed universe models. An interesting and important aspect of the
above equations is that Ω0 determines the geometry k, and k is not a function of time. We can therefore use
Ω0 to define the geometry.
If Ω = 1, the Universe is flat (k = 0, ρ = ρc).
If Ω < 1, the Universe is open (k < 0, ρ < ρc)
Ω > 1, the Universe is closed (k > 0, ρ > ρc)

Day 3

These three geometries evolve in very different ways. If we take

H =
1

R

dR

dt
, (29)

and k = 0 then (
dR

dt

)2

=
8πGρc,0

3R
(30)

This equation can be solved to get

Rflat = (6πGρc,0)1/3t2/3 (31)

=

(
3

2

)2/3(
t

tH

)2/3

(32)

The derivation is significantly more complicated if Ω0 6= 1, but I can show you the solution.

Rclosed =
4πGρ0

3kc2
[1− cos(x)] (33)

=
1

2

Ω0

Ω0 − 1
[1− cos(x)] (34)

tclosed =
4πGρ0

3k3/2c3
[x− sin(x)] (35)

=
1

2H0

Ω0

(Ω0 − 1)3/2
[x− sin(x)] . (36)

Ropen =
4πGρ0

3|k|c2
[cosh(x)− 1] (37)

=
1

2

Ω0

1− Ω0
[cosh(x)− 1] (38)

topen =
4πGρ0

3|k|3/2c3
[sinh(x)− x] (39)

=
1

2H0

Ω0

(Ω0 − 1)3/2
[sinh(x)− x] , (40)
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where x parameterizes the solution.

We see that all model Universes have the same scale factor of 1 for the present day, and that there is little
variation in the early Universe. At later times, the Universes will diverge greatly. The closed Universe
“bounce” is only a mathematical effect. Note that each line crosses the x-axis at different x-values, leading
to different ages of the Universe, with open being the longest, then flat, then closed.

In addition to different evolutions of the scale factor, the Universe geometries determine the age and time-
evolution of the Universe. We can take the above equation and substitute in R = 1/(1 + z) to get

tflat

tH
=

2

3

1

(1 + z)3/2
(41)

This is interesting! At the present day, the age of a flat, pressureless dust Universe is 2/3 of the Hubble
time. We know already that the Hubble time is approximately the age of the Universe, so obviously either
the Universe is not flat, or pressure is important. As we will see, photon pressure in particular is important
at some times of the Universe evolution.

Lookback Time The Lookback Time is how far in the past we are seeing when we observe something at
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redshift z. We can say that tL = t0 − t(z). Therefore, for a flat Universe,

tL
tH

=
2

3

[
1− 1

(1 + z)3/2

]
(42)

We see that for a flat Universe, if z = 1, the lookback time is about half a Hubble time. As before, the other
solutions are more complicated, but they are easy to understand from the graphs. As the Universe has
more material (Ω0 larger), the lookback time becomes smaller for a given redshift. This is another way of
saying that the expansion is slowing.

Including Pressure

We can include pressure in our simple model to arrive at a much more realistic treatment. This is in principle
quite simple. If instead of the mass density, ρ is the “equivalent mass density.” There is a relationship between
“state variables” used to define the state of a thermodynamic system; for our purposes pressure and density.
This is called an “equation of state.” The simplest equation of state is the ideal gas law:

PV = NkT
P

ρ
∝ T (43)

We can express an equation of state more generally if we remember that the pressure is proportional to the
energy density. We can then write

P = wu = wρc2 (44)

where u is the energy density and we have substituted in to get a term that looks like E = mc2. The
parameter w is the important one here. We know that w = 0 for pressureless dust and w = 1/3 for backbody
radiation (since Prad = urad/3).

We have one final parameter: the deceleration parameter q:

q(t) = −R(t)[d2R(t)/dt2]

[dR(t)/dt]2
(45)

So q > 0 for a decelerating Universe and q > 0 for an accelerating universe. For a pressureless dust Universe,
you can show that

q(t) =
1

2
Ω(t) (46)

Whew! OK, so let’s review all of our cosmological parameters:
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• H(t), the Hubble constant, very closely related to R(t) and z. At present, H(t) = H0

• z, the redshift, related to H(t), R(t), and tL. At present, z = 0 and z increases toward the Big Bang.

• R(t), the scale factor, or “size” of the Universe, related to above quantities. At present, R = 1 and R
is smaller closer to the Big Bank when the Universe was smaller.

• tL, the lookback time. Related to z and Ω0.

• ρc, the critical density necessary to halt the expansion of the Universe at t =∞.

• Ω0, the density parameter, tells us how close to the critical density we are. = 1 for flat, < 1 for open,
and > 1 for closed.

• k, which we will call the “curvature parameter”, =0 for flat, < 0 for open, > 0 for closed.

• w, the equation of state term used to relate pressure and density. w = 0 for pressureless dust and
w = 1/3 for blackbody radiation.

• q, the deceleration parameter.

So these are the parameters we need to determine if we are to understand our Universe. Since they are
all interrelated, we actually only need to determine H0, Ω0, and w. What do we actually measure? These
values are from Planck:

• H0 = 67.8± 0.9 km/s/Mpc

• Ω0 ' 1 (flat Universe)

• w = −1 This means a constant energy density, and negative pressure... (more on this later!)

The value for w hints that this is only part of the story though, because there is physics not yet discussed....

Revisions to this derivation I will write the most important equation again in two ways:[(
1

R

dR

dt

)2

− 8

3
πGρ

]
R2 = −kc2 (47)

This is known as the Friedmann equation. From last time, we found that for ρ we can use an “equivalent
mass density” if we have an equation of state. This can be simplified to

H2[1− Ω]R2 = −kc2 (48)

It is shocking (to me) that solving Einstein’s equations of general relativity led Aleksandr Friedmann to
derive this equation in 1922 when solving for an isotropic, homogeneous universe (also derived by Lemaitre
independently). (BTW, Lemaitre was the first to recognize that the equations imply a “Big Bang.”) So
our simple derivation of the evolution of a thin dust sphere is also valid for GR. We do have to change our
understanding of k though. More on that later.

Problems with this:
1) We need to explicitly include radiation pressure. We can do this easily by defining ρrel for relativistic
particles (photons). We then have ρm for matter, and in the Friedmann equation ρ = ρrel + ρm. Therefore

Ωrel = ρrel/ρc =
8πGρrel

3H2
(49)
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Similarly, for matter,

Ωm = ρm/ρc =
8πGρm

3H2
(50)

and therefore,
H2[1− (Ωm + Ωrel)]R

2 = −kc2 (51)

2) This equation does not result in a “steady state” solution! In other words, the Universe is continually
expanding. We can see this from our plot of the time evolution of R.

In 1917, Einstein realized that the Friedmann equation cannot be solved to yield a static Universe. At the
time, no one thought that the Universe was expanding, as Hubble’s work was not yet done. So Einstein
input a “Cosmological constant” Λ so that the Friendmann equation yields a steady-state solution (he is
often quoted as saying this was is “greatest blunder”, although there is some doubt as to whether this is
correctly attributed.): [(

1

R

dR

dt

)2

− 8

3
πGρ− 1

3
Λc2

]
R2 = −kc2 (52)

This “fudge factor” allows the equation to balance so that the expansion is zero. Notice that if Λ is positive,
the term has negative energy, and the energy is a function of R2. Since the force

F = −dE
dr

, (53)

FΛ ∝ +R, which is positive. The larger the scale factor, the larger the force. The Cosmological constant
provides a positive expansion! Another way to think about it is a negative pressure, or a negative energy
density. This is called “dark energy,” a repulsive force that opposes gravity. Notice that since Λ is a constant,
it is uniform everywhere (which is generally accepted). As best we can tell, it is the cost we pay for having
spacetime - it is baked into the fabric of the Universe. Huh.

How can we understand dark energy? It may be related to the Casimir effect. In the Casimir effect, there is
an attractive force between two parallel uncharged conuctive plates in a vacuum. While classically there is
no field between the plates, quantum electrodynamics predicts that there is one. This explains the observed
effect that the plates move together in the absence of any other forces. This negative energy density is also
predicted by particle physics. Unfortunately, quantum electrodynamics and particle physics disagree on the
magnitude of the effect by over 100 orders of magnitude. Even for astronomers, this is too big....

We can define additional terms as before:

ΩΛ = ρΛ/ρc =
8πGρΛ

3H2
(54)

and therefore,
H2[1− (Ωm + Ωrel + ΩΛ)]R2 = −kc2 (55)

The total density paramter
Ω = Ωm + Ωrel + ΩΛ (56)

so we once again have
H2[1− Ω]R2 = −kc2 (57)

This is exactly the same as our previous expression. Only the definition of Ω has changed.

But there is one strange thing about dark energy. We see from the revised Friedmann equation that in order
for ρΛ to have the same form as the other densities, we must write

ρΛ =
Λc2

8πG
(58)
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and if Λ = const, then ρΛ = ρΛ,0. This is profound! The density of dark matter never decreases, so as the
Universe expands, more and more dark energy appears to fill the increasing volume. This is what I meant
when I said that it was baked into the fabric of the Universe. Huh.

3) What is k? The GR solution in the Friedmann equation shows that k is related to the geometry of
the Universe. In normal Euclidean geometry a straight lines parallel to another line will continue parallel
infinitely and never intersect. This is known as Euclid’s fifth postulate. In the nineteenth century, mathe-
maticians found that there are other geometries that are self-consistent. For these geometries there exists
(a) no line parallel to the first (all lines will eventually intersect) and
(b) at least two lines parallel to the first. These are known as “elliptic” and “hyperbolic” geometries.

So the only loose end left is to understand that the elliptic and hyperbolic geometries are related to the
curvature constant in that:
k = 0: flat, Euclidean geometry with no curvature
k > 0: closed, elliptic geometry with positive curvature
k < 0: open, hyperbolic geometry with negative curvature

Notice that this is still the Newtonian classical solution. The full GR treatment gives (amazingly) the same
result. The only difference is the interpretation, with GR providing the information that k is actually related
to the geometry.

The History of the Universe

The Universe began with the Big Bang. (This term was coined by Fred Hoyle in 1950.) It started out
as a single point of infinite temperature and density, analogous to a black hole singularity, and has been
expanding until the present day. I want to discuss the time-evolution of the Universe by defining some of
the relevant epochs, and then by delving deeper into each epoch.

The main point in the evolution of the Universe from the Big Bang is that the temperature was hot and is
decreasing, and the density was high and is decreasing. This drives most of the rest of the evolution.

The first epoch is called the Planck epoch. The only way one can combine the physical constants into
something with the dimensions of time is

tP =

(
~G
c5

)0.5

(59)

This is the “Planck Time”, which is 10−43 s, and we cannot know about anything before this time.

After the Planck epoch comes the Grand unification epoch. In the Planck epoch, the four forces were
combined into one force. When gravity separates, the Grand Unification epoch begins.
10−43 − 10−36 s.

In the Electroweak Epoch, the strong force separated from the electroweak force. It is in this epoch that we
have “inflation,” which we will discuss later.
10−36 − 10−32 s

Eventually the Universe cools enough to start forming particles. What was there before? Just photons!
At sufficient energies the Universe is too hot to have stable particles. Instead, particles pop in and out of
existence. A high energy photon has a non-zero probability of becoming a particle-antiparticle pair, which
then annihilate to form the photon again. These were the conditions in the early Universe.

Hadron (incl. protons and neutrons) epoch
Between 10−6 second and 1 second after the Big Bang
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Lepton (inc. electrons) epoch
Between 1 second and 10 seconds after the Big Bang

Photon epoch
Between 10 seconds and 380,000 years after the Big Bang
The Universe at this point is still just a soup of particles and photons. In fact, it is so dense, that it is
optically thick. Within the photon epoch are:

Nucleosynthesis
Between 3 minutes and 20 minutes after the Big Bang
This is the most important epoch. All the elements are created in nuclear reactions. By “elements” I just
mean nuclei at this stage.

Recombination
380,000 years after the Big Bang
At some point the Universe had expanded to the point where it was optically thin. At this point it is still a
soup of particles. The high photon energy and interaction rate means that everything is ionized. When the
Universe becomes optically thin, the photons are free to travel and the fewer interactions between photons
and matter allow matter to form atoms. This is confusingly called “recombination” although it was never
combined previously.

The Dark Ages
Between 380,000 years and maybe 150 MYr after the Big Bang. At this point there was neutral hydrogen,
but nothing else. Galaxies had not yet formed. There were no stars. There are numerous experiments
ongoing to detect the HI signal from this era.

Reionization
Maybe 150 million to 1 billion years after the Big Bang
Eventually the first stars do form. This “reionizes” the Universe because the first stars were quite massive.

How do we know there was a Big Bang?

CMB anisotropy:
Because of the Sun’s motion with respect to the Hubble flow:

Tmoving =
Trest(1− v2/c2)0.5

1− (v/c) cos θ
(60)

where θ is the angle between the direction of observation of the CMB and the direction of motion. This
reduces to

Tmoving ' Trest

(
1 +

v

c
cos θ

)
(61)

for velocities much less than c.

There are peculiar motions of the Sun around the Galactic center, and also for the Local Group that sum
to about 627 km/s toward the constellation Hydra.

Inflation and the solution to some of the problems with the standard model
There are a number of problems with the standard model:
1) Why is the CMB so smooth? The Universe expanded fast early in its history, and photons more than 2
degrees on the sky today were not in causal contact previously. So how could the temperature of the CMB
be so smooth? This is the horizon problem.
2) Why is the Universe so flat? Observationally Ω0 = 1, but why? If Ω0 were slightly different, we wouldn’t
have stars and galaxies. That would be bad. This is the “flatness” problem.”
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3) It’s not obvious, but the standard model predicts a number of magnetic monopoles. These have not beed
found.

Inflation Inflation solves the horizon and flatness problem. The inflation theory is basically accepted today,
and says that the initial Universe did not have Ω = 1. Inflation rapidly expanded the Universe. This solves
the flatness problem because initially everything was close together, and it was causally connected. Then it
expanded. It solves the flatness problem because it acts in such a way to stretch spacetime such that today
Ω0 = 1, but it wasn’t originally. The reason for inflation is still being investigated.

Why is there structure in the Universe?
Just as there is no obvious Talk about power spectrum?

Three Eras in the History of the Universe
We know that the Universe has cooled and decreased in density. Now let’s figure out how.

Some of the analysis we skipped results in the relationship between the scale factor, the equation of state
parameter, and the density of the Universe:

R3(1+w)ρ = constant = ρ0 (62)

This ρ can be mass or energy density. Let’s start early in the Universe when there was only relativistic
particles. This is the radiation era. Therefore, for radiation:

R3(1+wrad)urad = R4urad = urad,0 (63)

since for blackbody radiation w = 1/3 (and the CMB is a perfect blackbody). We could similarly write

R4ρrel = urel,0 (64)

For blackbody radiation, the energy density
u = aT 4 (65)

so therefore
R4aT 4 = aT 4

0 (66)

and
RT = T0 . (67)

Therefore, we can determine the temperature of the CMB at any point in the history of the Universe.

When matter dominates, we’ll call it the matter era. When matter is no longer being created, the total
mass must be constant, so

R3ρm = ρm,0 (68)

When is the transition? When Ωm = Ωrel, or ρm = ρrel.

ρrel,0

R4
=
ρm,0

R3
(69)

so

Rrel,m =
ρm,0

ρrel,0
=

Ωm,0

Ωrel,0
(70)

We know that ρrel = g∗aT
4, with a being the radiation constant and g∗ the effective degrees of freedom for

relativistic particles, and so by measuring T for the CMB we get a relationship between R and Ωm,0.
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There may then be a transition to a dark energy dominated Universe. When would that take place? We
know that the dark energy density is a constant, so

ρΛ =
Λc2

8πG
= constant = ρΛ,0 (71)

or

ΩΛ =
Λc2

3H2
(72)

Notice that there is no dependence on R here! Thus, when Ωm = ΩΛ, this leads to

Ωm,0R
−3 = ΩΛ,0 (73)

or

Rm,Λ =

(
Ωm,0

ΩΛ,0

)1/3

(74)

So now we have three potential eras. When does the transition between these eras take place, and what is
actually measured? As with many things, it’s not quite as easy to explain as we’d like. The favorite model
of cosmology, and what we have been discussing, is the ΛCDM model. That stands for a Universe that has
dark energy, and “cold” dark matter (i.e., not neutrinos). This model makes specific predictions for how the
CMB should look, namely the appearance of something called the CMB “power spectrum,” which tells us
how much power is contained at various angular scales.

If the CMB temperature fluctuations are smooth, there will be little power at small spatial scales. If the
fluctuations are all small with nothing large-scale, there will be more power at small spatial scales.

The power spectrum is important for two reasons:
1) Measurements of the CMB allow us to fit models to the derived power spectrum, and therefore derive
various cosmological parameters, namely Ωm.
2) The small lower-temperature structures in the CMB represent the “seeds” of structure in our present-day
Universe. Those slightly lower temperature patches have slightly higher density and they grew into today’s
superclusters.

See how things change here: http://background.uchicago.edu/

So we measure the power spectrum, and derive Ωm and ΩΛ. With these values in hand, we can then
determine when the Universe transitioned from radiation to matter to dark energy dominated (see previous
equations). These transitions happened at

Rrel,m = 3.05× 10−4 (75)

zrel,m = 3230 (76)

trel,m = 55, 000 years (77)

Rm,Λ = 0.72 (78)

zm,Λ = 0.39 (79)

trel,m = 7× 109 years (80)

So the transition from radiation to matter dominated happened fast, but the transition from matter to dark
energy dominated took place only in the last half of the Universe’s evolution.
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The book gives a nice derivation of the full time-evolution of the scale factor (Equation 29.131). In short,
during the radiation era, R ∝ t1/2, during matter-dominated R ∝ t2/3 and during dark energy-dominated R
grows exponentially.

We can determine how the density parameters change.

Ωi(t) =
8πG

3H2(t)
ρ(t) (81)

and after a bit of algebra we find

˙Ωi(t) = Ωi

(
ρ̇i(t)

ρi(t)
− 2 ˙H(t)

H(t)

)
(82)

We have an expression for H that depends on Ω and expressions for ρ(R) for all species.

The Ultimate Fate of the Universe

We have already discussed what will happen to the Universe, but let’s review some other possibilities and
talk about further evidence for the ultimate fate.

Big Rip: > 20 billion years from now
This scenario is possible only if the energy density of dark energy actually increases without limit over time.
In this case, the expansion rate of the universe will increase without limit. Gravitationally bound systems,
such as clusters of galaxies, galaxies, and ultimately the Solar System will be torn apart. Eventually the
expansion will be so rapid as to overcome the electromagnetic forces holding molecules and atoms together.
Finally even atomic nuclei will be torn apart and the universe as we know it will end in an unusual kind
of gravitational singularity. At the time of this singularity, the expansion rate of the universe will reach
infinity, so that any and all forces (no matter how strong) that hold composite objects together (no matter
how closely) will be overcome by this expansion, literally tearing everything apart.

Big Crunch: > 100 billion years from now
If the energy density of dark energy were negative or the universe were closed, then it would be possible
that the expansion of the universe would reverse and the universe would contract towards a hot, dense state.
Current observations suggest that this model of the universe is unlikely to be correct, and the expansion will
continue or even accelerate.
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Big Freeze: > 105 billion years from now
This scenario is generally considered to be the most likely, as it occurs if the universe continues expanding
as it has been. Over a time scale on the order of 1014 years or less, existing stars burn out, stars cease
to be created, and the universe goes dark. Over a much longer time scale in the eras following this, the
galaxy evaporates as the stellar remnants comprising it escape into space, and black holes evaporate via
Hawking radiation. In some grand unified theories, proton decay after at least 1034 years will convert the
remaining interstellar gas and stellar remnants into leptons (such as positrons and electrons) and photons.
Some positrons and electrons will then recombine into photons. In this case, the universe has reached a high-
entropy state consisting of a bath of particles and low-energy radiation. It is not known however whether it
eventually achieves thermodynamic equilibrium.

Heat Death: 101000 years from now
The heat death is a possible final state of the universe, in which it has ”run down” to a state of no thermo-
dynamic free energy to sustain motion or life. In physical terms, it has reached maximum entropy (because
of this, the term ”entropy” has often been confused with heat death, to the point of entropy being labelled
as the ”force killing the universe”). The hypothesis of a universal heat death stems from the 1850s ideas
of William Thomson (Lord Kelvin) who extrapolated the theory of heat views of mechanical energy loss in
nature, as embodied in the first two laws of thermodynamics, to universal operation.

How can we determine the fate of the Universe?
We need some way to measure the change in H. The Friedmann equation shows that the value of H is
related to the redshift. Rearranging terms in the Friedmann equation, we get

H = H0(1 + z)
[
Ωm,0(1 + z) + Ωrel,0(1 + z)2 + ΩΛ,0(1 + z)−2 + 1− Ω0

]1/2
(83)

This is Eqn. 29.122. This gives the evolution of the Hubble parameter with redshift. BUT, notice that the
overall geometry of the Universe matters a lot, and as z decreases, ΩΛ becomes more important.

This is profound! The expansion of the Universe depends on the redshift in a measurable, predictable way.

So all we need to do is measure the distance to a set of objects, then measure how fast they are receding
from us. If H has always been constant, there will be no difference in these two methods, even at large z.
0) We need a “standard candle.” Cepheids are too dim. Need Type 1a supernovae
1) Find supernova Type 1a (hard! Rare!)
2) Measure their brightnesses
3) From the brightnesses (and known luminosities), calculate distances
4) Measure their redshifts, which provides another estimate of distance from Hubble’s law
5) Compare these two distance estimates.

But there is one complication. The distance inferred from the brightness measurements is actually called
the “luminosity distance” (see below).

dL =
L

4πF
, (84)

with L and F as luminosity and flux. Imagine a source emitting one photon per second. At cosmological
distances we have a cosmological redshift that reduces the wavelength by a factor of (1 + z). There is also
cosmological time dilation that reduces the time between photons received. This effect adds another factor
of (1 + z).

The full derivation of dL requires GR, unfortunately, and does not result in a nice analytical solution. Crap.
We can still use the result.

We know that
m−M = 5 log(dL)− 5 (85)
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because this relation must also hold for the luminosity distance. Because we don’t have a nice expression
for dL, we also don’t have one for the distance modulus. The book gives an approximate expression that is
illustrative though:

m−M ' 42.38− 5 log(h) + 5 log(z) + 1.086(1− q0)z (86)

This is only strictly vald for z << 1. q0 is the deceleration parameter we had before:

q(t) = −R(t)[d2R(t)/dt2]

[dR(t)/dt]2
(87)

This shows that when z is small, the relationship approaches m−M ∝ log(h). As z increases, the final term
becomes dominant. This is due to the cosmological constant.

So all we have to do is measure the distance modulus and compare it with the predictions from various
Universe models. When we do this we find that SN Type Ia are systematically fainter than we thought, by
about 0.25 magnitudes. Thus, they are further away than would be expected for a Universe with q = 0, or
the Universe has been accelerating in its expansion. The fate of the Universe will be to expand forever at
an ever=increasing rate, ending in a Big Freeze.

Distances in Cosmology

Since the Universe itself is expanding, we have many choices of our preferred distance measure. Here, let’s
discuss the most common ones.

First, we need to introduce the Robertson-Walker metric, which defines a spacetime interval between two
events in an isotropic, homogeneous Universe.

(ds)2 = −(c dt)2 +R2(t)

[(
d$

1− k$2

)2

+ ($dθ)2 + ($ sin θdφ)2

]
(88)

We won’t go into much detail on this equation, but we do need to explain $, which has the same definition
as before. This is our “comoving coordinate” and is unchanged with Universe expansion. t is the universal
time since the Big Bang.

For light, ds = 0 and for a radial path dθ = dφ = 0 so therefore

c dt

R(t)
=

d$√
1− k$2

(89)

Proper Distance

Proper distance roughly corresponds to where a distant object would be at a specific moment of cosmological
time, which can change over time due to the expansion of the universe. Importantly, it factors in the
expansion.

dP (t) = R(t)

∫ $

0

d$
′

√
1− k$2

(90)

We can integrate the radial light travel path from observed to emitted time to get∫ t0

te

c dt

R(t)
=

∫ $e

0

d$
′

√
1− k$2

(91)
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And combining these find

dP (t) = R(t)

∫ t0

te

c dt
′

R(t′)
(92)

Importantly, dP,0 = dP (t0) is the distance to ab object today and not when the light was emitted.

Today, dP,0 = $ if k = 0 but coordinate and proper distances disagree if k 6= 0.

Angular Diameter Distance

Imagine a source of size D that that subtends δθ. Then

dA ≡
D

δθ
(93)

The angular diameter distance obviously depends on the expansion of the Universe. As the universe expands,
it increases. Astronomers thought that if they were able to compare the angular diameter distance of an
object in the present and past, they could determine how much expansion has taken place. Because there
are no such objects that don’t also evolve (i.e., galaxies today are different than they were in the past), this
method doesn’t have much accuracy.

We won’t derive it, but we can rewrite the angular diameter distancee as

dA(z) =
c

H0

1

1 + z

∫ z

0

dz

[Ωm,0(1 + z)3 + ΩΛ,0]0.5
(94)

In this expression, we have ignored the very small Ωr,0.

Luminosity Distance

The luminosity distance is the distance that relates the flux and luminosity:

d2
L ≡

L

4πF
(95)

The flux decreases as 1/$2. Because we are dealing with flux, we also have to account for how light is
affacted. Cosmological redshift reduces the flux by a factor of 1 + z and cosmological time delay adds an
additional factor of 1 + z). Thus,

F =
L

4π$2(1 + z)2
(96)

so
dL = $(1 + z)2 (97)

or
dL = (a+ z)2dA (98)
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