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ASTR705: The Interstellar Medium - Spring 2023

Prof. Loren Anderson
Phone: 304-293-4884; 304-508-8486
Email: loren.anderson@mail.wvu.edu
Meeting Times: 10:30 - 11:20 MWF, White G51
Office Hours: M 9:30-10:30, Th 12:00-1:00, and by appointment
Required Textbook: “Physics of the Interstellar and Intergalactic Medium,” Draine, B.T.
Suggested: “Physics And Chemistry of the Interstellar Medium,” Kwok, S.

Course Description
An in-depth look at the interstellar medium (ISM), the material in between stars, with a
focus on our own Milky Way Galaxy. Topics covered include the composition of our Galaxy,
the phases of the ISM, the properties of the gas and dust in the ISM, dust and gas chemistry,
magnetic fields, dynamic processes, and star formation.

Expected Learning Outcomes
By the end of this course, you will be able to:
-describe the phases and composition of the ISM;
-analyze observational data from gas and dust in the ISM;
-evaluate under which circumstances certain dynamical effects will dominate interactions
between the various ISM phases.

Suggested Prerequisite
ASTR601 “Astrophysics Seminar”. Students who have not taken this course should study
the modules on estimation, units, radiative transfer and blackbody emission.

Grading
The course will be graded out of 400 points, with 20 points for each of the 10 homework
assignments, 50 points for the midterm, 100 points for the final exam, and 50 points for the
oral presentation.

Grades will be assigned based on the points earned:
350+ = A
300+ = B
250+ = C
200+ = D
200− = F

Homework I will assign regular homework throughout the course. I will not accept late
assignments, except in extraordinary circumstances. Expect to spend two hours on reading
and homework for each hour of in-class time. Homework will generally be assigned on Fridays
and due the following Friday; we will spend part of that class period reviewing solutions.

Midterm Exam Halfway through the course there will be a take-home midterm exam.
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Final Exam There will be a single final, comprehensive, take-home exam given during the
final class period and due before our specified finals time.

Topical Presentations Throughout the course I will allow each of you to present one small
aspect of a current topic. These can take the form of journal-club-like reviews of classic
papers in the field or black-board presentations, at your discretion. Full credit will be given
for simply presenting.

Inclusivity Statement The West Virginia University community is committed to creating
and fostering a positive learning and working environment based on open communication,
mutual respect, and inclusion. If you are a person with a disability and anticipate need-
ing any type of accommodation in order to participate in your classes, please advise your
instructors and make appropriate arrangements with the Office of Accessibility Services.
(https://accessibilityservices.wvu.edu/)

More information is available at the Division of Diversity, Equity, and Inclusion
(https://diversity.wvu.edu/) as well. [adopted 2-11-2013]

Academic Integrity Statement The integrity of the classes offered by any academic
institution solidifies the foundation of its mission and cannot be sacrificed to expediency,
ignorance, or blatant fraud. Therefore, instructors will enforce rigorous standards of aca-
demic integrity in all aspects and assignments of their courses. For the detailed policy of
West Virginia University regarding the definitions of acts considered to fall under academic
dishonesty and possible ensuing sanctions, please see the West Virginia University Academic
Standards Policy. Should you have any questions about possibly improper research cita-
tions or references, or any other activity that may be interpreted as an attempt at academic
dishonesty, please see your instructor before the assignment is due to discuss the matter.

Other Resources There are many good books and resources available for the study of the
ISM. I think the Draine book is the best, but these may be of interest as well. I have copies
of many of these, if you want to borrow one at any point in the course.

• “Dust in the Galactic Environment: 2nd Edition” by Whittet, ISBN 0-7503-0624-6
(2003). A nice treatment of dust in the ISM.

• “An Introduction to Star Formation,” by Ward-Thompson & Whitworth, ISBN 978-
0-521-63030-6. Focuses on clouds and star formation.

• “Astrophysics of Gaseous Nebulae and Active Galactic Nuclei: 2nd Edition,” by Os-
terbrock & Ferland, ISBN 1-891389-34-3 (2006). A classic but biased to optical obser-
vations

• “The Physics and Chemistry of the Interstellar Medium,” by Tielens, ISBN 0- 521-
82634-9 (2005). Similar to Kwok.

• “The Interstellar Medium,” by Lequeux, ISBN 3-540-21326-0 (2003) – Good, but oddly
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ordered.

• “Astrophysics of the Diffuse Universe,” by Dopita & Sutherland, ISBN 3-540- 43362-7
(2003). Also good

• “The Physics of the Interstellar Medium: 2nd Edition” by Dyson & Williams, ISBN
0-7503-0460-X (1997) - older, thinner, not very deep, but a good quick read, especially
for H II regions

• “Physical Processes in the Interstellar Medium,” by Spitzer, ISBN 0-471-02232-2 (1978)
– Older standard in the field, but dated and difficult to follow

• Harvard Astronomy ay201b Online Course: http://ay201b.wordpress.com/

• NRAO Essential Radio Astronomy Online Course:
http://www.cv.nrao.edu/course/astr534/ERA.shtml

• Aaron Parson’s YouTube channel:
https://www.youtube.com/user/AaronRobertParsons/videos

• CalTech’s wiki: https://casper.berkeley.edu/astrobaki/index.php/Main Page
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Day Date Topics Reading Assignments

Mon. Jan. 9 Basics of the ISM and MW Draine Ch. 1
Wed. Jan. 11 Basics of the ISM and MW Draine Ch. 1
Fri. Jan. 13 Stat. Mech., Radiative Transfer Kwok, Ch. 2,3
Mon. Jan. 16 MLK Day - No Class
Wed. Jan. 18 Stat. Mech., Radiative Transfer Kwok, Ch. 2,3
Fri. Jan. 20 Stat. Mech., Radiative Transfer Kwok, Ch. 2,3 HW1
Mon. Jan. 23 Introduction to (Line) Emission Notes; Draine Ch. 2,3,4,6,7,9,17
Wed. Jan. 25 Introduction to (Line) Emission Notes; Draine Ch. 2,3,4,6,7,9,17
Fri. Jan. 27 Introduction to (Line) Emission Notes; Draine Ch. 2,3,4,6,7,9,17 HW1 Due; HW2
Mon. Jan. 30 Atomic Gas Draine Ch. 8, 29, 30
Wed. Feb. 1 Atomic Gas Draine Ch. 8, 29, 30
Fri. Feb. 3 Atomic Gas Draine Ch. 8, 29, 30 HW2 Due; HW3
Mon. Feb. 6 Atomic Gas Draine Ch. 8, 29, 30
Wed. Feb. 8 Atomic Gas Draine Ch. 8, 29, 30
Fri. Feb. 10 Atomic Gas Draine Ch. 8, 29, 30 HW3 Due; HW4
Mon. Feb. 13 Molecular Gas Draine Ch. 5, 32, 32, 33; Kwok Ch. 7, 9
Wed. Feb. 15 Molecular Gas Draine Ch. 5, 32, 32, 33; Kwok Ch. 7, 9
Fri. Feb. 17 Molecular Gas Draine Ch. 5, 32, 32, 33; Kwok Ch. 7, 9 HW4 Due; HW5
Mon. Feb. 20 Molecular Gas Draine Ch. 5, 32, 32, 33; Kwok Ch. 7, 9
Wed. Feb. 22 Molecular Gas Draine Ch. 5, 32, 32, 33; Kwok Ch. 7, 9
Fri. Feb. 24 Molecular Gas Draine Ch. 5, 32, 32, 33; Kwok Ch. 7, 9 HW5 Due
Mon. Feb. 27 Midterm Review Midterm
Wed. Mar. 1 Continuous Radiation Notes; Draine Ch. 2,3,4,6,7,9,17
Fri. Mar. 3 Midterm Review
Mon. Mar. 6 Dust Draine Ch. 12.4, 21, 22, 23, 24
Wed. Mar. 8 Dust Draine Ch. 12.4, 21, 22, 23, 24
Fri. Mar. 10 Dust Draine Ch. 12.4, 21, 22, 23, 24 HW6
MWF Mar. 13-17 Spring Recess - No Class
Mon. Mar. 20 Dust Draine Ch. 12.4, 21, 22, 23, 24
Wed. Mar. 22 Dust Draine Ch. 12.4, 21, 22, 23, 24
Fri. Mar. 24 Dust Draine Ch. 12.4, 21, 22, 23, 24 HW6 Due; HW7
Mon. Mar. 27 Ionized Gas Draine Ch. 10-15, 18, 27, 34
Wed. Mar. 29 Ionized Gas Draine Ch. 10-15, 18, 27, 34
Fri. Mar. 31 Ionized Gas Draine Ch. 10-15, 18, 27, 34 HW7 Due; HW8
Mon. Apr. 3 Ionized Gas Draine Ch. 10-15, 18, 27, 34
Wed. Apr. 5 Ionized Gas Draine Ch. 10-15, 18, 27, 34
Fri. Apr. 7 Ionized Gas Draine Ch. 10-15, 18, 27, 34
Mon. Apr. 10 Spring Holiday - No Class
Wed. Apr. 12 Dr. Anderson Travelling
Fri. Apr. 14 ISM Dynamics and SF Draine Ch. 36, 41, 42 HW8 Due; HW9
Mon. Apr. 17 ISM Dynamics and SF Draine Ch. 36, 41, 42
Wed. Apr. 19 ISM Dynamics and SF Draine Ch. 36, 41, 42
Fri. Apr. 21 ISM Dynamics and Star Formation Draine Ch. 36, 41, 42 HW9 Due; HW10
Mon. Apr. 24 ISM Dynamics and Star Formation Draine Ch. 36, 41, 42
Wed. Apr. 26 Makeup/Special Topic
Fri. Apr. 28 Final Review HW10 Due; Final
Th. May 4 2-4pm Final Due
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These notes serve as a summary of the material we will cover in ASTR705 this semester.
My hope is that you find these a useful reference, in addition to our textbook.

Editor’s note: text within square brackets represents notes to myself, since I am lecturing
directly from this document!
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Chapter 1

Introduction

1.1 Basics (Draine Ch. 1)

The interstellar medium, or ISM, is the material between stars. Stars form from material in
the ISM, and when they die that material is recycled back into the ISM from which the next
generation of stars will form. Whether you are studying the ISM directly or not, it shows
up in all observations (including observations of pulsars!). About 10% of all the baryons in
the Milky Way (MW) are in the ISM, but its influence is much greater than that implied by
this number.

Figure 1.1: The cycle of material in the ISM. Stars are born of gas from the ISM and return
these elements to the ISM when they die.

So, why should you care about the ISM?
(1) You probably need this class for credit;
(2) The ISM is one of the main constituents of spiral galaxies like our own;
(3) Material in the ISM forms stars, and so is critical to understanding galaxies;
(4) The physics of the ISM is really interesting, and touches on many different areas;
(5) It is probably a good time to admit that astronomy doesn’t really need to have reasons,
because it is cool enough already.

3
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We want to understand the organization, distribution, physical conditions, and evolution of
the ISM. We will focus on the ISM in our Galaxy (capital “G”!), since it is by far the best
studied and understood. The topics extend naturally to the IGM, the intergalactic medium.

What is the ISM made of?

• Gas (atomic and molecular), including plasma (ions and electrons). This is the domi-
nant form in terms of mass in the Galaxy.

• Dust. Small ≲ 1µm particles mixed with the gas. These are molecules too big to name.
About 1% of the gas mass is dust. Created by evolved stars, with small contribution
from supernovae.

• Cosmic Rays (CRs). Ions and electrons with extremely high energies that zoom around
the Galaxy. Because they are treated as individual particles, this phase is distinct from
a plasma.

• Dark matter (DM). No EM interaction, only gravity for some reason. Non-barionic.
We won’t deal with this component explicitly.

And what fields are there?

• EM radiation. Primarily photons from stars, the CMB, gas (incl. plasmas), dust, and
relativistic electrons (synchrotron).

• The magnetic field (guides ionized particles). The magnetic field strength is notoriously
difficult to quantify, but can be very important.

• The gravitational field.

This course will cover as many of these as is possible during the term. When I took a class
on the ISM as a gard student, it went on for three semesters and never got to star formation.
The ISM is a very rich subject!

1.1.1 The ISM and the MW (not in book)

The MW is a spiral (disk) galaxy. A spiral galaxy has a bulge (old stars) and a disk
(old+young stars). The corona, or halo is a spherical component surrounding the disk. Spiral
(and irregular) galaxies have ongoing star formation. Stars are made from gas (+dust) and
therefore spiral galaxies have gas+dust. Elliptical galaxies by-and-large only have stars. We
hates them.

The stars and gas in the MW extend to a Galactocentric radius (distance from GC, RG) of
about 25 kpc. The Sun is at a RG of ∼ 8.5 kpc from the GC. The distribution of baryonic
matter decreases with RG. The percentage of DM increases with RG.

Using RG is great for understanding the MW, but our measurements are actually made in
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Figure 1.2: Spiral galaxies NGC1300 (left), which displays a prominent bar, and M51 (right),
which has a companion galaxy, but no bar. Note the obvious dust lanes in both galaxies and
the blue colors indicative of ongoing (massive) star formation.

Figure 1.3: The elliptical galaxy M3. Note how boring and stupid it is due to the lack of
dust, and the yellow color indicative of an older stellar population.

Galactic coordinates. These coordinates have as their origin the location of Sun. They use
ℓ for Galactic longitude and b for Galactic latitude. b is defined as zero in the Galactic
mid-plane, at positive values up to +90 ◦ toward the North Galactic pole, and negative
values down to +90 ◦ toward the South Galactic pole. ℓ is defined increasing toward the east
along the mid-plane, from 0/360 ◦ at the GC to 180 ◦ in the Galactic anticenter. We define
quadrants such that 0−90 ◦ is quadrant I, 90−180 ◦ is quadrant II 180−270 ◦ is quadrant III
270− 360 ◦ is quadrant IV. This is a Sun-centered definition! We define the “inner Galaxy”
as the region within the Sun’s Galactocentric radius (and therefore orbit), and the “outer
Galaxy” as the contrary. The inner Galaxy has by far the majority of stars, star formation.
and ISM material. Quadrants I and IV are often referred to as the inner Galaxy.

[look at plates in book]

Within 15 kpc of the Galactic center, the total mass of the MW is ∼ 1011M⊙. Of this, about
half (∼ 5 × 1010M⊙) is stars, about half (∼ 5 × 1010M⊙) is DM, and a small percentage
(∼ 7 × 109M⊙) is gas. Dust is only 1% that of gas. Notice the twiddles! These are all
quite uncertain. Of the gas, ∼ 60% is atomic hydrogen, ∼ 20% is molecular hydrogen (H2),
and ∼ 20% is ionized hydrogen. Helium adds ∼ 25% to these numbers. (It is worth noting
that ∼ 10% He by number is ∼ 40% by mass.) The above numbers differ for each type of
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Figure 1.4: Galactic coordinates. The left panel shows an artist’s rendition of what we think
the Milky Way looks like. Galactic longitude is projected onto this image. The right panel
shows a more edge-on view of Galactic longitude and latitude.

Component Mass (M⊙)
Total Mass ∼ 1011

Stars ∼ 5× 1010

Dark Matter ∼ 5× 1010

Gas ∼ 7× 109

Dust ∼ 7× 107

Table 1.1: Mass of Milky Way components within 15 kpc of the Galactic center.

Galaxy. Most of the baryonic material in the Universe is actually ionized gas found at extreme
temeratures in galaxy clusters. Weird, huh? In the Milky Way, this high-temperature plasma
is much less important and we will not deal much with it.

The stellar and ISM distributions are flattened in the disk, but basically symmetric about
the Galactic center (GC) and about the Galactic mid-plane. The MW disk is really thin,
but has no sharp boundary in the z-direction - like our atmosphere on Earth. The gaseous
component of the disk decreases to 50% of its mid-plane density at ∼ 250 pc, so the full
thickness is ∼ 500 pc. This illustrates just how thin it really is. Another measure you may
see is called the “scale height,” which is the distance you have to travel for the density to
decrease by a factor of e. This is obviously higher.

1.1.2 How do we know there is an ISM? (historical points shame-
lessly stolen from Harvard ay201b course notes)

Early astronomers pointed to 3 lines of evidence for the ISM:

• Extinction (absorption and scattering; also known as “attenuation”). Dust absorbs
light from background stars. In 1919, Barnard called attention to these “dark mark-
ings” on the sky, and put forward the (correct) hypothesis that these were the silhou-
ettes of dark clouds. A good rule of thumb for the amount of extinction present is 1
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magnitude per kpc (for typical, mostly unobscured lines-of-sight; Wikipedia says 1.8;
obviously varies quite a bit in the Galaxy). We will learn exactly what this means next
class.

• Reddening (scattering; note that this is a part of extinction already). Even when the
ISM doesn’t completely block background starlight, it scatters it. Shorter-wavelength
light is preferentially scattered, so stars behind obscuring material appear redder than
normal. If a star’s true color is known, its observed color can be used to infer the column
density of the ISM between us and the star. Robert Trumpler first used measurements
of the apparent “cuspiness” and the brighnesses of star clusters in 1930 to argue for the
presence of this effect. Reddening of stars of “known” color is the basis of techniques
used to map extinction today.

• In observations of binary stars whose spectral lines shift in velocity, astronomers no-
ticed that some lines were not shifting. These lines were from stationary material
between us and the binary system. Johannes Hartmann first noticed this in 1904 when
investigating the spectrum of δ Orionis.

Helpful References: Good discussion of the history of extinction and reddening, from Michael
Richmond (http://spiff.rit.edu/classes/phys230/lectures/ism dust/ism dust.html).

Figure 1.5: A small molecular cloud known as a “Bok globule.” The left shows shorter
wavelengths (B,V,I filters) than the right (B,I,K) filters. Notice how the longer wavelength
image shows more stars (extinction), and those stars are redder (reddening).

1.1.3 Phases of the ISM (Draine Ch. 1.1)

We can break the ISM into various gas “phases,” which each have characteristic densities
and temperatures. These phases do not exist co-spatially, but can be assumed to be roughly
in pressure balance with each other.

• Coronal gas - ∼ 105 to 106K plasma. Caused by SN. Also called “hot ionized medium”
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(HIM). Dominates barionic matter out of the plane (and in galaxy clusters).

• H II gas - ∼ 104K plasma. Mostly caused by ultraviolet (UV) radiation from OB stars.
H II regions such as Orion surround OB stars and live for MYrs. Planetary nebulae are
created when evolved stars shove off their outer layers, and live for ∼ 104 years. Diffuse
∼ 104K plasma is known as the “warm ionized medium” (WIM), and is maintained
by OB stars but pervades the entire Galactic disk. Particle densities of ∼ 1 cm−3 for
WIM and up to 106 for H II regions. [talk about cm−3?]

• Warm H I- T ∼ 103.7K, density ∼ 0.6 cm−3. Also called “warm neutral medium”
(WNM).

• Cool or Cold H I- T ∼ 102K, density ∼ 30 cm−3. Also called “cold neutral medium”
(CNM).

• Diffuse molecular gas - Primarily H2 but mainly traced by CO. Temperature of maybe
30K (book says 50K) and density of ∼ 100 cm−3.

• Dense molecular gas - Primarily H2 but traced with many molecules (CS, NH3, H2CO,
N2H

+, etc.). Temperature of maybe 10K (book says 10–50K) and density of ∼ 103 −
106 cm−3. Makes stars.

Atoms and molecules of course change between these phases continually.

1.1.4 Elemental Composition (Draine Ch. 1.2)

Obviously, mostly H, but 40% He by mass (10% by number). After that, C, N, O, Ne, Mg, S
are the main players, each with ∼ 10−5 the abundance of H, but together all “metals” with
Z > 3 only add ∼ 1% to the total mass. See Table 1.4. They nevertheless dominate the
ISM temperatures due to cooling lines, and provide most of our diagnostics.

Figure 1.6: Elemental abundances.
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1.1.5 Energy Densities

We can characterize the energy density in units of erg cm−3. Many different forms:

• thermal (u = 3/2nkT )

• bulk kinetic or “ram pressure” (u = 1/2ρv2)

• CR (simply uCR for now)

• magnetic (B2/8π)

• EM (from CMB, dust, starlight, atoms, molecules, plasmas) hν per photon, uλ or uν
for the radiation field, so u = λuλ = νuν . For blackbodies, u = aT 4.

All of these energy densities are comparable! This is because the ISM self-regulates to some
degree and energy is exchanged between the various sources. Too much of one would suppress
another, leading to suppression of the former. Too much EM from stars would increase the
thermal energy, making star formation more difficult, and decreasing EM. Too much CR
would make CRs excape the Galaxy because the magnetic is too low, leading to a decrease
in uCR.

[from http://www.ita.uni-heidelberg.de/ rowan/ISM lectures/galactic-rad-fields.pdf] The EM
field has some nomenclature that is important. Most of the EM field is from stars. Stars
produce energy primarily in the near infrared, visible and soft ultraviolet. However, in neu-
tral regions of the ISM, stellar photons with energies greater than the ionization energy of
hydrogen, 13.6 eV, are largely absent - they are absorbed by hydrogen atoms, ionizing them,
and hence cannot penetrate deeply into neutral regions.

We can characterize the EM field in various ways:

• Mathis et al. (1983, A&A, 128, 212) showed that in the solar neighborhood, the
starlight component of the ISRF could be represented at long wavelengths as the sum
of three diluted black-body spectra. At wavelengths λ > 2450 Å, we have

νuν =
3∑

i=1

8πhν4

c3
Wi

ehν/kTi − 1
, (1.1)

where Wi and Ti are the dilution factor and temperature of each component, with
T1 = 3000 K,W1 = 7.0 × 10−13, T2 = 4000 K,W2 = 1.65 × 10−13, T3 = 7500 K,W3 =
1.0× 10−14.

• At wavelengths λ < 2450 Å, the starlight contribution to the ISRF has been estimated
by a number of authors. The earliest widely-cited estimate was made by Habing (1968).
He estimated that νuν ≃ 4×10−14 erg cm−3 at λ = 1000 Å, corresponding to a photon
energy of 12.4 eV. It is often convenient to reference other estimates to this value, which
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we do via the dimensionless parameter

χ =
(νuν)

1000 Å

4× 10−14 erg cm−3
(1.2)

• Alternatively, we can reference other estimates to the Habing field by comparing the
total energy density in the range 6-13.6 eV. In this case, we define a different dimen-
sionless parameter

G0 = u(6− 13.6 eV)5.29× 10−14 erg cm−3 (1.3)

If we are interested in e.g. the photodissociation of H2 or CO, which requires photons
with energies > 10 eV, then χ is the appropriate parameter to use. On the other hand,
if we are interested in e.g. the photoelectric heating rate, which is sensitive to a wider
range of photon energies, then G0 is more appropriate.

• Two other estimates of the UV portion of the ISRF are in widespread use: one due to
Draine (1978) and the other due to Mathis et al. (1983). Draine (1978) fit the field
with a polynomial function:

λuλ = 6.84× 10−14λ−5
3 (31.016λ23 − 49.913λ3 + 19.897) erg cm−3 , (1.4)

where λ3 = λ/1000 Å. This field has a normalization, relative to the Habing field, of
χ = 1.71 and G0 = 1.69. Mathis et al. (1983) used instead a broken power-law fit:

νuν = 2.373× 10−14λ−0.66781340− 2450 Å (1.5)

6.825× 10−13λ1100− 1340 Å (1.6)

1.287× 10−9λ4.4172912− 1100 Å (1.7)

Here, all wavelengths are in µm, and the energy densities are in units of erg cm−3. This
estimate has χ = 1.23 and G0 = 1.14. The available observational evidence suggests
that the MMP83 estimate is a better one than that of Draine (1978), but the latter is
probably in wider use in models of the ISM.

1.1.6 Putting it all together (see Wikipedia article on ISM as well)

Trends: T and n inversely correlated, and T and volume correlated (ideal gas law, yo!). T
and scale height correlated.

1.2 Radiation (Kwok Ch. 2); see also ASTR601 notes

1.2.1 The Electromagnetic Spectrum

Astronomers have chopped up the EM spectrum and these terms get thrown around a lot -
it is useful to review them here. These are all very approximate.
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Gamma Rays: above 100 keV per photon
“hard” X-rays: 10 to 100 keV per photon
“soft” X-rays: from ∼ 1 keV and 100 nm per photon
ultraviolet (UV): 100 - 300 nm per photon
“far” UV (FUV): 100-200 nm per photon
“near” UV (FUV): 200-300 nm per photon
optical (visible): 300-700 nm (UVBRI filters; well maybe not U or I)
Infrared (IR): 700 nm to 500µm
Near IR (NIR): 500 nm to 3µm(JHK filters)
Mid IR (MIR): 3 to 50µm
Far IR (FIR): 50 to 500µm
Sub-mm: 500µm to 1mm
mm: 1-3mm
Radio: below 3mm.

Each of these regimes has “bandpasses” or filters that define wavelengths where observations
are conducted. Here are a few:

Figure 1.7: The Milky Way midplane seen at a variety of wavelengths (top left), the EM
spectrum (top right), and the opacity curve of the Earth’s atmosphere (bottom; 0% is opaque
and 100% is complete transmission).

Sometimes these bandpasses correspond to windows in the atmostphere (see ALMA band-
passes), and sometimes they are determined by the materials used to create the filter (the
HST ones).

Most observations can be categorized as either “photometry” and “spectroscopy.” In pho-
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Figure 1.8: Filter bandpasses for infrared observatories Spitzer and WISE (top), ALMA
(bottom left) and various optical observatories (bottom right).

tometry, you get an image of the flux, averaged over a bandpass. In spectroscopy, you get a
spectrum, or a 1D range of values as a function of wavelength. You can also do photometry
of spectral lines, which is called “narrow-band” photometry.

1.2.2 Intensity

The specific intensity of radiation the most basic observable quantity. It is essentially the
surface brightness, and is appropriate for all resolved objects.

Two important things about brightness (from NRAO radio course):
(1) As long as the source is resolved, intensity is independent of distance. Thus, the camera
exposure time and aperture setting for an exposure of the Sun would be the same, regardless
of whether the photograph was taken close to the Sun (from near Venus, for example) or
far away from the Sun (from near Mars, for example), as long as the Sun is resolved in the
photograph. This seems terribly wrong at first, but can easily be proven.
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(2) Intensity is the same at the source and at the detector. Thus you can think of brightness
in terms of energy flowing out of the source or as energy flowing into the detector.

In radio astronomy, we use units for specific intensity of temperature in Kelvin, or in units
of Jy beam−1. In the MIR and FIR, a common units for intensity is MJy sr−1. At visible
wavelengths, you may simply see photon counts.

Intensity is related to the energy dE passing through an infinitesimally small area dσ by:

dE = Iν dσ cos θ dΩ dν dt . (1.8)

Here, “specific” refers to the fact that it is at a particular wavelength. We can of course
rewrite this as:

Iν =
dE

dσ cos θdΩdνdt
. (1.9)

θ is measured normal to the surface dσ and dΩ is the solid angle. The dimensions of Iν are
then erg cm−2Hz−1 s−1 sr−1.

Figure 1.9: Geometry of an astronomical observation. dΩ corresponds to the solid angle and
dA is the area of the detector.

Notice that we wrote the specific intensity in frequency units. Iν has a dependence on dν,
and dν ̸= dλ. Instead,

dν = −(c/λ2)dλ (1.10)

so combining with the above equations

νIν = λIλ (1.11)

To get the intensity or integrated intensity we would of course integrate over frequency or
wavelength:

I =

∫ ∞

0

Iνdν =

∫ ∞

0

Iλdλ (1.12)

Because integrating over frequency always requires many assumptions, these quantities are
rarely used.
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1.2.3 Solid Angles

The discussion of specific intensity above included solid angles, which many students haven’t
yet heard of. A solid angle, measured in dimensionless steradians (sr), is simply a two-
dimensional angle. Think of it as a cone spreading out from the center of a sphere to its
edge. A solid angle is the area of a unit sphere such that there are 4π sr total on a sphere.
The obvious application is the sky. Objects that appear larger on the sky have a larger solid
angle.

The mathematical definition is

dΩ = sin θdθdϕ (1.13)

or

Ω =

∫
S

∫
sin θdθdϕ , (1.14)

where θ and ϕ are angles in spherical coordinates and the integration is over surface S.

Figure 1.10: Solid angles. The left image shows the relationship between the area on the
sphere and the solid angle Ω. The right panel shows some values of the solid angle of the
Earth. The entire Earth is 4π sr, or 12.57 sr.

For a spherical solid angle, θ = ϕ. For spherical solid angles with small θ we can approximate
the solid angle with:

Ω ≃ πθ2 , (1.15)

with θ in radians of course. Notice that this is just the area of a circle of radius θ. The true
solid angle will be slightly smaller than this for a given value of θ, although this is almost
always appropriate for astronomical measurements. The true formula is

Ω = 2π(1− cos θ) (1.16)

Problem: What is the solid angle of a single 6′′ square pixel?
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1.2.4 Flux

While intensity is perfect for extended sources, we are frequently more interested in the
quantity of flux integrated over solid angle:

Fν =

∫ dΩ

Iν cos θdω (1.17)

or

Fν =

∫ 2π

0

∫ π

0

Iν cos θ sin θdθdϕ . (1.18)

The units of flux are therefore erg cm−2 s−1Hz−1. Note that this is technically the “specific”
flux, but we don’t use that term for some reason - instead we call this term the “flux density.”
This is confusing terminology, I know! In the radio and MIR/FIR regimes, we frequently
use the unit of Jansky (Jy), which is 10−23 erg cm−2 s−1Hz−1. Similar to the intensity, we
can integrate over frequency or wavelength to (again) get the flux or integrated flux. Again,
this is rarely done.

In practice, when do we use spectral brightness and when do we use flux density to describe
a source? If a source is unresolved, meaning that it is much smaller in angular size than the
point-source response of the eye or telescope observing it, its flux density can be measured
but its spectral brightness cannot. If a source is much larger than the point-source response,
its spectral brightness at any position on the source can be measured directly, but its flux
density must be calculated by integrating the observed spectral brightnesses over the source
solid angle.

1.2.5 Luminosity

Intensity and flux are observable quantities, and not physical quantities. We are often more
interested in luminosity, which is intrinsic to the source. The observed luminosity is

Lν = 4πd2Fν , (1.19)

where d is the distance to the source. Again, even if it’s a “specific” luminosity, we generally
just say “luminosity.”

Luminosity can also be defined leaving a surface:

dLν =

∫
surface

FνdA . (1.20)

Since for black bodies, F = σT 4 (Stephan-Boltzmann), L = AσT 4 if the object can be
characterized by a single temperature. [This information repeated below in the blackbodies
section.]

Notice that I have given you two different definitions of luminosity! One is appropriate
when you know the emergent flux from a surface, and one is appropriate when you know the
observed flux that you measure with your telescope, similar to how we discussed intensity.
Both are fluxes and have the same units. Because both flux definitions almost never show
up together in an expression, I have neglected to differentiate between them.
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1.2.6 Magnitudes

Magnitudes are the units of brightness, typically used in the optical and near-infrared
regimes. They are always measured in a particular bandpass, for example the Johnson
V-band (see bandpasses earlier in this lecture). This allows us to compute “colors” by look-
ing at magnitude differences. Colors are the crudest way of determining the shape of the
spectral energy distribution.

The study of the ISM rarely requires use of magnitudes, since magnitudes are most often used
to characterize stars. Stars are not part of the ISM! I’ll include information on magnitudes
here for completeness.

Magnitudes are based on Hipparchus’s classification of stars in the northern sky. Hipparchus
classified stars with values of magnitudes from 1 to 6, 1 magnitude being the brightest.
Because it was defined by eye, and the eye does not have a linear response, a first magnitude
star is not twice as bright as a second magnitude star. Instead, astronomers later found that
Hipparchus’ system is roughly logarithmic, and 6th magnitude stars are roughly 100 times
fainter than 1st magnitude stars. The magnitude system has two peculiarities:
(1) It is defined backwards, and
(2) It is logarithmic.
So it is basically the ideal system to use.

Five equal steps in log-space (1st to 6th magnitude) result in factors of 2.512 in linear space
(100∆m/5 = 2.512∆m). Therefore, a 1st magnitude star is 2.512 times brighter than a second
magnitude star, and a 4th magnitude star is 2.5123 = 15.8 times fainter than a 1st magnitude
star. Another way of thinking about this is:

m1 −m0 = −2.5 log10(F1/F0) (1.21)

or
F1

F0

= 100.4(m0−m1) , (1.22)

where F1 and F0 are the fluxes and m0 and m1 are the magnitudes at wavelengths or
frequencies “0” or “1”.

How can we actually use this system? We need a reference star of known flux and magnitude.
Any star will do, but two commonly used ones are Vega and the Sun.

Instead of arbitrary wavelengths, we usually use photometric filters. The most common
filters used are the Johnson U,V,V,R,I, but there are now a large number of filters available.
Magnitudes found using these filters are often denoted with the filter names themselves, e.g.,
B for mB.

Question: a star has a B − V color of −1. Stars with B − V = 0 appear slightly blue. Does
this star look more or less blue? What does that imply about its temperature?

In the ISM, dust attenuates star light, and this attenuation is often measured in magnitudes.
Each kpc in the Galaxy produces about a magnitude of visual extinction. Star formation
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Figure 1.11: Blackbody curves in linear (left) and log (right) space.

regions can have visual extinctions of 100, so a star would have 2.512100 = 1040 times less light
than it would if extinction were not present. Extinction generally decreases with increasing
wavelength, so it is less in the infrared and essentially absent in the radio. We will discuss
the exact form of the extinction law in some detail.

1.2.7 Blackbody Emission

You all know blackbodies (Planck functions):

Bν =
2hν3

c2
1

ehν/kT − 1
. (1.23)

or

Bλ =
2hc2

λ5
1

ehc/λkT − 1
. (1.24)

But what you may not know are the units: erg cm−2 s−1Hz−1 sr−1 forBν or erg cm
−2 s−1 cm−1 sr−1

for Bλ, where the additional “cm” term is the wavelength (often given in Angstroms). In
other words, it is a specific intensity! But under what conditions is Iν = Bν? We’ll see in a
bit.

If we are on the right side of the peak in the long wavelength limit, ehc/λkT−1 ≃ 1+hc/λkT−
1 = hc/λkT . In frequency units, we find ehν/kT − 1 ≃ 1 + hν/kT − 1 = hν/kT . We can
therefore write

Bλ =
2ckT

λ4
(1.25)

or

Bν =
2ν2kT

c2
(1.26)

This is known as the Rayleigh-Jeans limit or Rayleigh-Jeans approximation. [When is this
approximation valid?] We almost always assume this limit in radio astronomy.

Sν =

∫
beam

IνdΩ , (1.27)
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where Sν is the flux density [radio astronomy doesn’t use Fν for some reason], and the
integration is over the telescope beam (not necessarily over the entire source!). We can refer
to the temperature as the brightness temperature, TB, and

Sν =

∫
beam

BνdΩ =

∫
beam

2ν2

c2
kTBdΩ . (1.28)

What is the brightness temperature? It is the value that is needed to give the measured
flux Sν . Wikipedia’s definition: “Brightness temperature is the temperature a black body
in thermal equilibrium with its surroundings would have to be to duplicate the observed
intensity of a grey body object at a frequency.” This is of course not necessarily the kinetic
temperature. If the source of interest is a blackbody this is the kinetic temperature, TB = Tk,
but this is not necessarily true in all cases. If the source has a constant surface brightness
over the telescope beam,

Sν =
2ν2

c2
kTBΩ . (1.29)

There are a two important points about blackbody radiation. First, we can use Wien’s Law
to determine the peak wavelength (or frequency):

λmax =
0.2898

T (K)
cm , (1.30)

or
νmax = 5.879× 1010T (K) . (1.31)

We can derive these by setting the differential of Bλ or Bν equal to zero. This tells us that
hotter things peak at shorter wavelengths and higher frequencies. This illustrates the utility
of colors, but only if you roughly know the temperature of the object!

In the infrared, we have some handy rules of thumb: a 30K cloud peaks at 100µm, and a
100K cloud will peak at 30µm. Hot stars (30000K) peak at 100 nm in the UV. The Sun
(6000K) peaks at 500 nm in the visible (green).

A second important point is that a hotter blackbody emits more intensity at all wavelengths.
This can be see in the above figures. Since the blackbody units are those of intensity, this
means that a hotter blackbody has a higher surface brightness than a cooler blackbody.

It is important to remember that more intensity at all frequencies does not necessarily mean
more energy! Think about burners on a stove. A small hot burner will have very intense
radiation. A large cooler burner will have less intense radiation. But the larger one may boil
water faster because although its intensity (surface brightness) is lower, it emits more total
energy.

Let’s quantify this. To find the intensity (not the specific intensity), we integrate over all
frequencies or wavelengths:

B(T ) =

∫ ∞

0

Bν(T )dν . (1.32)
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After some math, this integral results in the expression

B(T ) =
σT 4

π
, (1.33)

where σ is of course the Stephan-Boltzmann constant. In the case of an isotropic radiation
field, which we can almost always assume, it can be shown that F = πI, so therefore
F = σT 4. This is of course the Stephan-Boltzmann Law again. We are often interested in
the total luminosity of an object (in erg s−1 or W):

L =

∫
S

FdA , (1.34)

the flux integrated over the emitting surface. For spherical objects, this leads to L =
4πr2σT 4, where r is the object’s radius. Thus, the total energy output is related to the
surface area and the temperature.

1.2.8 Types of Emission

There are broadly two types of emission: continuous and line. For continuous emission, there
are no quantized energy states, and the particles can therefore emit at any frequency. “Line”
radiation, either in emission or absorption, arises from transitions between discrete energy
states.

Examples of continuous emission are: blackbodies, free-bound, bound-free, and Brehmsstrahlung.
Examples of line emission are H I 21 cm, CO rotational transitions, etc. These are not mu-
tually exclusive! For example, plasmas emit continuous Brehmsstrahlung emission, as well
as recombination line emission.

Line emission requires an understanding of atomic energy states. To express these states,
we use spectroscopic notation:

2S+1LJ , (1.35)

where

• S⃗ is the total spin quantum number and 2S⃗ + 1 is the number of spin states; S⃗ is the
absolute value of the total electron spin S⃗ = |(

∑
si)|; S⃗ = 0 for a closed shell and

S⃗ = 1/2 for hydrogen;

• L⃗ is the total orbital angular momentum (L⃗ =
∑
ℓ⃗i), which is written as S, P,D, F, ...

for |L⃗| = 0, 1, 2, 3...

• J⃗ is the total angular momentum quantum number; J⃗ = L⃗ + S⃗; for a given L⃗, there
are 2S + 1 possible values of J , unless L < S, in which case there are 2L+ 1 possible
values of J . For a hydrogenic ion, L = 0, S = 1/2, and J = 1/2. For more complex
atoms, J takes on the values L+ S, L+ S − 1, ..., |(L− S)|.
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The splitting of energies based on total angular momentum J⃗ is known as “fine-structure”
splitting. Transitions between these different energy states defined by J-levels are not allowed
by electric dipole radiation, but are very important in the ISM. There are further splittings
called “hyperfine structure,” based on the interaction between electronic and nuclear spins.
This is not captured in spectroscopic notation.

And two new vocabulary words: The “term” is the set of levels characterized by a specific
S and L; The “level” is the set of 2J + 1 states with specific values of L, S, and J . The
difference in the energy between two levels gives the wavelength or frequency of an atomic
transition.

The lowest state of hydrogen is S = 1/2, L = 0, J = 1/2, or 2S1/2. The ground state of
Boron has a 2P1/2 term. Closed shells always have a 1S0 term.

1.2.9 The Interstellar Radiation Field

Because dust emits and absorbs (largely) continuous radiation, it interacts much more
strongly with the interstellar radiation field compared to gas. At this point it’s good to
review our notes on the interstellar radiation radiation field (ISRF). These are contained in
Draine Chapter 12, and in the introduction notes. Below, we’ll expand on those notes.

Briefly, the ISRF has six components:
1) Synchrotron radiation from relativistic electrons
2) CMBR
3) IR emission from dust grains
4) Thermal emission from warm (104) plasma
5) Starlight
6) X-ray emission from hot (105 to 108K plasma)

Draine Chapter 12 goes into some detail on these six components, in order of increasing
frequency.

Galactic Synchrotron Radiation

We will discuss synchrotron in more detail when we talk about plasmas. Synchrotron ra-
diation is known as “non-thermal,” which means that the intensity of the radiation does
not depend on the temperature of the source. Synchrotron dominates at the lowest radio
frequencies, and its spectrum can be defined as

νuν ≈ 2.86× 10−19ν0.059 erg cm−3 , (1.36)

between 400MHz and 1.4Hz for |b| > 5 deg, where ν9 is the frequency in GHz. The syn-
chrotron intensity is the same as that of the CMBR near ∼ 1GHz. AGN and supernova
remnants emit synchrotron radiation.
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CMBR

The CMB is essentially isotropic radiation from the Big Bang, with a temperature of 2.7255±
0.0006K. The CMB is slightly anisotropic though, due to the Sun’s motion relative to the
CMB rest frame. Dominant source of intensity from ∼ 1GHz to a few mm.

Free-Free and Recombination Continuum

Warm (∼ 104K) plasma has various emission mechanisms, which are mainly from free-
free and free-bound. Both of these are “continuous,” because they involve un-quantized
energy states. We will go into these emission mechanisms in much more detail later. These
mechanisms are not usually dominant at any wavelength.

Dust

Dust dominates the emission spectrum from ∼ 600µm to 5µm. About 2/3 of the power is
from wavelengths greater than 50µm. This is the “gray-body” emission from large grains.
Gray-bodies are just blackbodies with slightly lower optical depths. The peak of this radia-
tion near 1µm tells us that the dusts is near 30K. Dust dominates from a few mm to a few
µm.

Dust also has pseudo line emission seen in Draine Figure 12.1. These arise from bending
and stretching modes of smaller grains, most prominently polycyclic aromatic hydrocarbons.
Their emission dominates from ∼ 3 to ∼ 20µm.

Starlight

Starlight can take the form of a blackbody. As you hopefully found in your first homework,
the combined spectrum from a population of stars peaks near 1µm. This is the emission
from a star with temperature near 3000K.

There are a few important points about starlight:
Larger stars emit more UV light (hotter Blackbodies). Therefore, the local ISRF changes
depending on location.
Photons with E > 13.6 eV are quickly absorbed by the ever-present hydrogen.

FUV radiation (1) photo-excites and photo-dissociates H2 and other molecules, (2) photo-
ionizes heavy elements, and (3) ejects photo-electrons from dust grains.

We can classify UV radiation fields in terms of Habing units (Habing, 1968):

χ =
(νuν)1000

4× 10−14 erg cm−3
. (1.37)

the 4× 10−14 number is from Habing (1986), and χ is known as “Habings.” The intensity is
measured near 1000 Angstroms in the UV.
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Figure 1.12: (left) ISRF near the Sun (Draine 12.1). Spectral lines not included. Squares
show measurements. Dotted lines show constant photon occupation number nγ. (right)
Same as Figure 5.22 (Draine 12.3), but near an O star with T = 3.5× 104K. Again, spectral
lines not shown and dotted lines are constant nγ.

Sometimes a wider range of UV radiation is better, so we also have the parameter G0, which
is referenced to the Habing (1968) spectrum integrated between 6.0 and 13.6 eV, which yields
5.29× 10−14 erg cm−3. G0 is therefore:

G0 =
u(6− 13.6) eV

5.29× 10−14
erg cm−3 (1.38)

You will see values quoted for Habing units and G0.

X-Rays from Hot Plasma

Just as we get radio emission from warm plasma, we get X-Ray emission from hot (106K)
plasma. Where does this hot plasma come from? In our Galaxy, it is mainly from supernovae.
In large galaxy clusters, it is from electrons “falling” in to the potential and accelerating.

In our Galaxy, X-rays play a very small role. In a cluster of galaxies, they dominate the
emission.

Note that

nγ =
c2

2hν3
Iν (1.39)

or

nγ =
c3

8πhν3
uν (1.40)

for the average over all directions (factor of 4π).

Views of the sky: http://mwmw.gsfc.nasa.gov/mmw allsky.html
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1.3 Radiative Transfer [see ASTR601 notes]

1.3.1 The Equation of Radiative Transfer

Radiative transfer is the change in intensity dIν as radiation propagates from a source to the
observer. Along the way, the emission will either be absorbed and scattered by intervening
material, or it will encounter an emitting region.

For attenuation, we can define a “linear absorption coefficient” κν with units of cm−1. This
is misleading since it contains contributions from both absorption and scattering! Note that
this is not opacity or mass absorption coefficient, although both share the same notation and
a similar definition! Sorry for the confusion. The amount of energy absorbed is proportional
to the light intensity:

dIν = −κνIνds , (1.41)

where ds is the path. Absorption removes photons from the path, thus the negative sign.
It is worth pointing out here that absorption excites atoms and molecules, and these atoms
and molecules then re-emit. If this emission were beamed along ds there would be no change
in intensity. Instead, the re-emitted light is more generally close to isotropic, so the emission
is reduced.

For emission, we can define the emission coefficient jν as:

dIν = jνds . (1.42)

Notice that there is no dependence on Iν , in contrast to absorption. The units of jν are
erg cm−1 sr−1 s−1.

The total change in intensity is therefore

dIν = jνds− κνIνds , (1.43)

or
dIν
ds

= jν − κνIν . (1.44)

This is one form of the Equation of Radiative Transfer. This is one of the fundamental
equations in astrophysics. All it is saying, however, is that the change in intensity along the
path is just the emission (jν) minus the absorption (κνIν).

Let’s take the illustrative example of no emission. In this case

dIν
ds

= −κνIν , (1.45)

which has a solution

Iν(s) = Iν,0e
−κνs , (1.46)

where Iν,0 is the unattenuated emission. The radiation intensity will decrease exponentially.
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We can also define the dimensionless quantity of optical depth τν from

dτν = κν ds . (1.47)

or

τν =

∫
κν ds , (1.48)

where the integration is carried out over the path length. In most cases, we need only
integrate over the source of interest. For example, if there is a gas cloud 20 kpc away that
is 1 kpc thick, we may be able to only integrate over the 1 kpc of the cloud if the rest of the
20 kpc can be assumed to have no impact. For completeness,

Iν(τν) = Iν,0e
−τν , (1.49)

The optical depth ranges from zero to infinity.
Low values τν ≪ 1 are called “optically thin.” These are things you can see through at that
particular frequency. A good example is glass, which has a very low optical depth at optical
frequencies, but actually has a high optical depth in the ultra-violet.
High values τν ≫> 1 are called optically thick. A wall is optically thick at optical frequencies.
A wall is optically thin at X-ray frequencies.
Near τ ≃ 1 we have to be careful - this is marginally optically thick.

If we rewrite things in terms of the optical depth, using dτν
ds

= κν ,

dIν
dτν

=
jν
κν

− Iν . (1.50)

We can further define the Source function Sν

Sν =
jν
κν

(1.51)

Combining our expressions, we arrive a second form of the Equation of Radiative Transfer,
this time using the optical depth and source function:

dIν
dτν

= Sν − Iν (1.52)

We will use this one from now on, because optical depth is a much better and more measur-
able parameter compared with actual linear depth.

In (full) thermodynamic equilibrium (TE) at temperature T , there is no change in intensity
along the path and dIν

dτν
= 0. In this case, Iν = Sν = Bν(T ), our old friend the Planck

function. When is Iν = Bν(T )??? When dτ → ∞! Or in other words, when the optical
depth is high, the intensity is that of a blackbody at temperature T . In this case, nothing
else about the source matters, only its temperature.
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This is a subtle, but extremely important point. For high optical depth sources, the only
emission you can get out is that of a blackbody. You cannot for example get line emission.
The source properties, aside from temperature, do not matter. The only thing you see is
the surface emission. In fact, you only see down on average to the depth where the optical
depth is unity. Think of a wall again, where you cannot determine how thick it is since you
only see the paint layer (ok, so a wall actually is not a perfect blackbody since paint reflects
light of different wavelengths....). Contrast this with glass. As glass get thicker, and thicker,
we will notice more of a green hue. By determining how green it is, we can work out how
thick it is. We will return to this point later.

1.3.2 Solutions to the Equation of Radiative Transfer

The deceptively simple equation of radiative transfer has had volumes written about its
solutions. We can integrate the transfer function by multiplying by eτν :

eτν (dIν + Iνdτν) = eτνSνdτν (1.53)

d(eτνIν) = eτνSνdτν (1.54)

If we define τν = 0 at Iν,0,

eτνIν − Iν,0 =

∫ τν

0

eτ
′

Sνdτ
′

(1.55)

multiply by e−τν

Iν(τν) = Iν,0e
−τν +

∫ τν

0

Sν(τ
′)e−(τν−τ ′ν) dτ ′ (1.56)

The intensity Iν at optical depth τν is the initial (background) intensity Iν,0 attenuated by a
factor e−τν , plus the emission Sνdτ

′
integrated over the path, itself attenuated by the factor

eτν−τ
′
ν . This final exponent represents “self-absorption.” The material itself will absorb its

own radiation. “Self-absorption” refers to absorption by one species (H I, CO, etc) by that
species. If background radiation from e.g. H I is absorbed by optically thick H I, this is called
self-absorption. We will revisit this when we talk about H I and CO. This is known as the
“formal solution to the equation of radiative transfer.”

The difficulty in using Equation 1.56 is that in general we don’t know how S varies with τ ,
because S depends on I, which is not known until S is known. It’s a circular problem, which
is why it is often solved computationally. It is worth examining this equation a bit more in
limiting cases that allow us to simplify the integral:

τ = 0

If the optical depth is zero, we get Iν = Iν,0, simply the background intensity back. If there
is no optical depth, we get neither emission nor absorption (like a window!). This illustrates
how emission and absorption are intimately related.
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S = 0

If the source function is zero, we get Iν = Iν,0e
−τν , which is frequently written as Iν/Iν,0 =

e−τν . This is an absorption line! As τν increases, the absorption becomes stronger.

S constant

We can sometimes make the assumption that Sν is a constant, so we can pull it out of the
integral. Thus:

Iν(τν) = Iν,0(τν)e
−τν + Sν

∫ τν

0

e(−τ−τ ′) dτ ′ = Iν,0(τν)e
−τν + Sν(1− e−τν ) (1.57)

This is the most useful general form of the solution of radiative transfer for our purposes.
The first term on the right hand side is attenuation by the ISM along the line of sight. The
second one is emission from the ISM along the line of sight.

S constant, LTE

In Local Thermodynamic Equilibrium, LTE, Sν = Bν(T ) (we’ll revisit this), so

Iν(τν) = Iν,0e
−τν +Bν(1− e−τν ) (1.58)

We will discuss LTE later, but essentially it means that for a small volume we can assume a
single temperature that is also reflected in the level populations of the atoms and molecules.

S constant, LTE, Radio Regime

In the radio, we use the brightness temperature instead of the intensity. They are related by
Iν = 2ν2

c2
kTB, where TB is the “brightness temperature,” essentially the intensity the ideal

radio telescope would measure (we frequently drop the “B” subscripts in this expression).
We can also use the Rayleigh-Jeans approximation Bν(T ) =

2ν2

c2
kT , with T here the kinetic

temperature. Since these relationships both have the same constants, we can write

TB = TB,0e
−τν + T (1− e−τν ) (1.59)

Note that the use of the Rayleigh-Jeans approximation here does not imply that the material
is optically thick. It just implies that it follows the same form, but the emission is still
modified by the optical depth.

Keep an eye on that last temperature term T . Here, for a blackbody, it is the kinetic
temperature. What is it in the more general case? Keep reading to find out!

S constant, LTE, Optically Thin

If τν ≪ 1, we get emission from the background radiation, as well as from along the line of
sight. We can make the Taylor expansion substitution e−τν ≃ 1− τν , so therefore:

Iν(τν) = Iν,0(τν)(1− τν) +Bντν ≃ Iν,0(τν) +Bντν (1.60)
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The first term again is the background radiation attenuated by the ISM. The second term is
the Planck function modified by the optical depth of the ISM. Notice that we can still have
a blackbody-like spectrum even if it is optically thin, although it is modified by the optical
depth (which is less than 1). In the case that τν = 0, we of course only see the background
radiation.

In the radio regime, we get

TB = TB,0(1− τν) + Tτν ≃ TB,0 + Tτν (1.61)

S constant, LTE, Optically Thick

If τ ≫ 1, e−τν → 0, so

Iν = Sν (1.62)

This makes sense. If there is a blackbody in our line of sight, we don’t see any emission from
behind it.

In radio astronomy, TB = T for optically thick emission, the kinetic temperature of the
material (if in LTE).

1.4 Basics of Statistical Mechanics

1.4.1 Maxwell-Boltzmann distribution (partially from Wikipedia)

The Maxwell speed distribution describes particle speeds in idealized gases where the parti-
cles move freely inside a stationary container without interacting with one another, except
for very brief collisions in which they exchange energy and momentum with each other or
with their thermal environment. Applies only to systems in thermodynamic equilibrium.
Therefore, we only expect the Maxwell distribution in dense gas where collisions are fre-
quent. If collisions are infrequent, energy is not eficiently exchanged and we do not get a
Maxwell distribution.

In the Maxwell distribution, the probability of finding a particle with velocity v is:

f(v) =

√( m

2πkT

)3

4πv2e−
mv2

2kT , (1.63)

where m is the particle mass and kT is the product of Boltzmann’s constant and thermody-
namic temperature.

We can integrate the MB distribution function to find the mean particle speed,∫ ∞

0

v f(v) dv =

√
8kT

πm
, (1.64)
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or differentiate to find the most likely speed (peak of the function):

vp =

√
2kT

m
. (1.65)

The root mean square speed is also useful:√
⟨v2⟩ =

(∫ ∞

0

v2 f(v) dv

)1/2

=

√
3kT

m
=

√
3

2
vp . (1.66)

There is no “right” answer here for the best velocity to choose for all situations.

(from Wikipedia) The Maxwell-Boltzmann distribution applies to the classical ideal gas,
which is an idealization of real gases. In real gases, there are various effects (e.g., van der
Waals interactions, relativistic speed limits, and quantum exchange interactions) that make
their speed distribution sometimes very different from the Maxwell-Boltzmann form. That
said, rarefied gases at ordinary temperatures behave very nearly like an ideal gas and the
Maxwell speed distribution is an excellent approximation for such gases.

This is in 3D! We actually measure only 1D. Keep this in mind for later.

So, in LTE, all particle species follow a Maxwell-Boltzmann speed distribution that can be
characterized by a single (kinetic) temperature Tk. We will assume LTE frequently.

This probability density function gives the probability, per unit speed, of finding the particle
with a speed near v. If particles follow a MB distribution, we can characterize them with a
single temperature. When does this happen? When frequent collisions are able to thermalize
the distribution. Particles at velocity v, move one “mean free path” λ in time t:

v =
λ

t
(1.67)

The mean free path is

λ =
1

nσ
, (1.68)

where n is the particle density and σ is the effective cross section (not necessarily the geo-
metric cross section). Therefore,

t ≃ 1

nσv
, (1.69)

the particle timescale. This is a useful, although very approximate quantity! This sets the
timescale over which a population of particles can thermalize.

The mean free path is related to the optical depth:

τν =

∫
κds =

∫
n(s)σds ≃ s

λ
(1.70)

This is telling us something fundamental: when τν = 1, the photons have traveled one mean
free path. Because more photons will have traveled less than one mean free path than more,
the mean distance is < λ.
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The temperature of a gas is simply a measure of the kinetic energy of the gas particles. As
the temperature goes up, the particles move faster. How fast? Each dimension (degree of
freedom) adds ∼1/2 kT , so the particle energy is roughly 3/2 kT . This is approximate, but
is roughly the rms speed of a Maxwell-Boltzmann distribution.

1.4.2 Boltzmann Equation

The single most important equation in stat. mech. for us is the Boltzmann Equation:

ni

nj

=
gi
gj
e−Eij/k Tex , (1.71)

where ni is the density in state i, gi is the degeneracy of state i, Eij is the energy difference
between the two states, and Tex is the “excitation temperature.” More on Tex later.

While this equation gives the relative densities between states, we are frequently interested
in the fractional density of a given state compared to all states. In such cases, we need to
use the “partition function,”

Z(Tex) =
∞∑
i

gie
−Ei/k Tex (1.72)

So that
ni

nT

=
gie

−Eij/k Tex

Z(Tex)
, (1.73)

where nT is the total population in all levels.

The excitation temperature is not a physical temperature! It is instead the temperature at
which the Boltzmann equation is satisfied. When is Tex = Tk the kinetic temperature? When
collisions are frequent! Assume we have two competing processes: collisions and radiation,
and that the kinetic (collision) temperature Tk and radiation temperature (TR) are different.
If the timescale for collisions is closer than the timescale for photon-particle interactions,
Tex ≃ Tk.

For another example, assume that the population levels are inverted such that the upper
level is overpopulated relative to the lower level, then Tex is negative. This is allowed because
Tex is not a real temperature. These population inversions can result in masing emission.

It is also worth noting that the excitation temperature only corresponds to the transition
between the upper and lower levels. Therefore, each transition can have a different excitation
temperature!

Radiation temperature, TR, is the the equivalent temperature blackbody that would emit
the same intensity at the frequency of interest. This is also sometimes called the background
temperature, TBG or T0. In the limit of low frequencies where the RJ limit applies, the
brightness and radiation temperatures are the same.

If Tk = TR = Tex = T , the system is in thermodynamic equilibrium (TE). This happens
when the particle energy distribution follow the Boltzmann equation (and ionization states
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follow Saha, see below), the particle velocity distributions follow MB, and the radiation field
is a Planck function at temperature TR.

If Tk = Tex ̸= TR, the system is in local thermodynamic equilibrium, LTE. LTE is much easier
to attain and is commonly assumed. This is often good enough when collisions dominate
over radiative processes. “Local” here refers to ∼ one mean free path.

In LTE, the changes in temperature must vary slowly, so that at each point in the object
of interest we can assume TE. That temperature is that of the particles, which follow a
Maxwellian distribution with a single temperature, for all particle species. In other words,
the temperature gradient scale must be small compared to the mean free path of the particles.

1.4.3 Saha Equation

The Saha ionization equation relates the ionization state of an element to the temperature
and pressure.

For a gas composed of a single atomic species in LTE, only concerning two states (excited
and not as excited) the Saha equation is written:

ni+1ne

ni

≃ 2

(
2πmekT

h2

)3/2
gi+1

gi
exp

[
−Φr

kT

]
, (1.74)

where ni is the density of atoms in the i-th state of ionization, that is with i electrons re-
moved.
gi is the degeneracy of states for the i-ions
Φr is the energy required to remove i electrons from a neutral atom, creating an i-level ion
(the “ionization potential”).
ne is the electron density
me is the mass of an electron
T is the temperature of the gas
kB is the Boltzmann constant
h is Planck’s constant .

Hydrogen is particularly simple. The degeneracy for the ground state of hydrogen is 4
(proton spin up, electron up; p up e down; p down e up; p down e down). The degeneracy
for the ionized state is 2. We therefore have:

nH+ne

nH

≃
(
2πmekT

h2

)3/2

exp

[
−13.6 eV

kBT

]
, (1.75)

Why do we care? Plasmas are a very important component in the ISM. The Saha equation
tells us the characteristic temperature for each ionization state of a particular element. But,
when is it applicable???
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Your book gives ionization potentials for various species and ionization states in Appendix D.
For the common elements in the ISM, these ionization potentials are incredibly
useful to know! As atoms lose electrons, the remaining electrons require more and more
energy to become ionized.

1.4.4 Review: Temperatures

Already, we have seen many different definitions of temperatures. Let’s review these all in
one place. Some of these will be new.

• Excitation Temperature (Tex): The value required for the Boltzmann equation to
return the observed level populations. This is different for each transition (pair of
levels)!

• Spin Temperature (Ts): The excitation temperature for the 21 cm H I line.

• Radiation Temperature (TR): The temperature that characterizes a blackbody repre-
sentative of the radiation field. For example, TR = 2.7 K for the CMB.

• Kinetic Temperature (TK): The temperature that characterizes the distribution of
particle energies. Typically the rms speed of a Maxwell-Botzmann distribution is the
most useful, to TK = (3kT/m)0.5.

• Brightness Temperature (TB): The temperature a black body in thermal equilibrium
with its surroundings would have to be to duplicate the observed intensity of a grey
body object at a frequency.

And we have two simplifying regimes:

• Thermodynamic Equilibrium (TE): The particle energy distribution follows the Boltz-
mann equation (and ionization states follow Saha), the particle velocity distributions
follow MB, and the radiation field is a Planck function at temperature TR. In this case,
IF Tk = TR = Tex.

• Local Thermodynamic Equilibrium (LTE): TE applies over one particle mean free
path, or collisions dominate over radiative processes. In this case, Tk = Tex ̸= TR.

1.4.5 Lasers and Masers!

“Laser” stands for Light Amplification by Stimulated Emission of Radiation. Masers are
lasers in the microwave (radio) regime. Most such detected emission is from masers rather
than lasers, so we will use this term throughout. Masers are caused by stimulated emission,
covered earlier. We say that an object that emits maser emission is “masing.” Emission need
not be completely masing or non-masing - it is usually a mix in fact. We will cover masers
in more depth later, but masers have some interesting terms relating to radiative transfer.

In a maser, we have a “population inversion,” where the upper energy levels of an atom or
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molecule are over populated compared to the lower levels for the object temperature. In
such cases, impinging radiation stimulates the electronic transition from the over-populated
upper state to the lower state. In such cases, the attenuation is negative, the excitation
temperature is negative, and the optical depth is negative.

1.5 Spectroscopy

The first broad ISM topic for this course is gas (excluding ionized gas), its physics, how
we detect it, and what we know from it. Gas is the most massive barionic component of
the Galactic ISM. It also has the benefit of interesting, relatively simple physics (at least
compared to dust). We will work our way from the ubiquitous atomic H I through the dense
gas that is forming stars. Before we can start that though, we need a bit of background on
radiation. This review will cover most everything that you will need, but I expect that you
have some basic knowledge already.

Observations of gas in the ISM primarily consist of spectra, the intensity as a function
of frequency (or wavelength or velocity, etc). We can divide a spectrum into “line” and
“continuum” components. A spectral line is a decrement or excess intensity on top of the
continuum [draw figure of spectral line]. Spectral lines are produced from discrete (quantized)
transitions, most simply by electrons through electric dipole radiation, although many more
emission mechanisms are possible. Continuous radiation can come from a variety of different
emission mechanisms, and we will cover those later in the course when we talk about ionized
gas.

Figure 1.13: Spectra for stars of various spectral types, showing absorption lines on top of
the continuum.

There are two broad types of line spectra:
Absorption lines (decreases in intensity relative to nearby continuum) are produced when
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a cold gas is between a continuous spectrum source and the detector. Atoms in the cold gas
absorb photons from the continuous spectrum source. The photons are then emitted in ran-
dom directions, removing intensity along the line of sight. What is a continuous spectrum
source? Stars and quasars are pretty close (especially quasars). Most stellar spectra are
absorption line spectra, however, because the outer layers of the photosphere are less dense
and colder than the core.
Emission lines at discrete wavelengths are produced when the detector sees photons emit-
ted directly from a (hot) gas. The wavelengths of the emission lines are due to electronic
transitions within the atoms and are therefore unique to each atom.

1.5.1 Kirchoff’s Laws

The spectrum you observe depends on the density (the optical depth) of the object, and
the viewing direction. Observing the same object from a different direction will give you a
different signal. Kirchoff’s Laws tell us how to interpret the spectra we observe. There
are multiple sets of Kirchoff’s Laws, so it is safe to assume that Kirchoff was wicked smart
and interesting at parties.

Kirchoff’s three laws of spectra are:

• A dense object produces light with a continuous (blackbody) spectrum. Kirchhoff also
coined the term blackbody radiation because he was a show-off. You emit blackbody
radiation, with a peak in the infrared.

• A hot diffuse gas produces an emission line spectrum due to electronic transitions
within the gas. Fluorescent lights are a good example.

• A hot dense object surrounded by a cool tenuous gas (i.e., cooler than the hot object)
produces an absorption line spectrum. The absorption lines are at exactly the same
wavelengths as the emission lines for a given element, and are also due to electronic
transitions.

Figure 1.14: Kirchoff’s Laws
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1.5.2 Spontaneous Emission, Stimulated Emission, and Absorp-
tion (Draine Chapter 6)

The quantization of energy levels allows us to create some general principles of emission and
absorption. There are three separate classes of transitions: Spontaneous Emission, Stimu-
lated Emission, and Absorption. These transitions need not be electric dipole, but rather
can describe any transitions between quantized energy levels, for atoms, ions, molecules, or
dust grains.

These transitions each have a corresponding “Einstein Coefficient.” Einstein was also
wicked smart. The Einstein coefficients help us to relate the transition probabilities to the
particle and energy densities of the medium.

Absorption

An absorber X in level ℓ can absorb a photon with energy hν:

Xℓ + hν → Xu (1.76)

This only happens of course if the photon energy hν corresponds to the difference in energy
levels of the object in question.

If we have the volume density nℓ in the lower state, the volume absorption rate is:(
dnu

dt

)
ℓ→u

= −
(
dnℓ

dt

)
ℓ→u

= Bℓunℓuν , (1.77)

where uν is the spectral energy density at the correct frequency. The constant Bℓu is the
Einstein B coefficient for the transition ℓ→ u. We can see that the units of the Einstein B co-
efficient must be probability per unit time per unit spectral energy density [erg s−1 cm3Hz−1]
of the radiation field.

We can write the above equations because transitions out of level ℓ must populate level u,
and vice-versa. We will use this fact repeatedly.

Spontaneous Emission

Spontaneous emission is the process by which an electron “spontaneously” (i.e., without any
outside influence) decays from a higher energy level to a lower one:

Xu → Xℓ + hν . (1.78)

Similar to the above, we can say

−
(
dnu

dt

)
u→ℓ

=

(
dnℓ

dt

)
ℓ→u

= Auℓnu , (1.79)

where Auℓ is the Einstein A coefficient for spontaneous emission.
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The units for the Einstein A coefficient are simply per unit time. Spontaneous emission is
independent of the radiation field. Therefore, the lifetime in the excited state is just A−1. If
the Einstein A is high, the lifetime must be low and the transitions happen rapidly. If the
Einstein A is low, the lifetime is high, and the transitions happen at a slower rate. Therefore,
all else being equal, the strongest transitions have high Einstein A’s. We will develop this
concept further later.

The Einstein A coefficient has a particularly simple form for electric dipole radiation:

Auℓ =
64π4

3hc3
ν3uℓ|µuℓ|2 , (1.80)

where µuℓ is the mean electric dipole moment. What Equation 2.5 shows is that the Einstein
A increases rapidly as frequency increases. [What does this tell you about the line intensity?]
Transitions are much faster, and the line intensity therefore stronger, in the optical compared
to the radio!

Stimulated Emission (from Wikipedia)

Stimulated emission (also known as induced emission) is the process by which an electron is
induced to jump from a higher energy level to a lower one by the presence of electromagnetic
radiation at (or near) the frequency of the transition. This is the basis of lasers and masers.
From the thermodynamic viewpoint, this process must be regarded as negative absorption.
We can describe the process:

Xu + hν → Xℓ + 2hν . (1.81)

−
(
dnu

dt

)
ℓ→u

=

(
dnℓ

dt

)
ℓ→u

= Buℓnuuν , (1.82)

where Buℓ is the Einstein coefficient for stimulated emission (note that negative absorption
is entirely appropriate given the nomenclature). Both Einsten B coefficients have the same
units.

In stimulated emission a photon induces the electronic transition. The resultant photons have
exactly the same energy, phase, polarization and direction of propagation. Such radiation is
called “coherent.”

It’s Turtles all the Way Down

The Einstein coefficients are not independent of each other. Absorption of a photon can lead
to emission at some later time. Similarly, emission of a photon, either by spontaneous or
stimulated emission, can lead to absorption.

In TE, the net exchange between any two levels will be balanced. This is known as “detailed
balance.” We can therefore write:

0 = Auℓnu +Buℓnuuν −Bℓunℓuν . (1.83)
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Draine shows how these coefficients must be related in the case that uν is the energy density
of a blackbody1 (in TE, as above):

Buℓ =
c3

8πhν3
Auℓ (1.84)

or

Bℓu =
gu
gℓ
Buℓ =

gu
gℓ

c3

8πhν3
Auℓ . (1.85)

The strength of the stimulated emission and absorption are both determined by stimulated
emission and the ratio of the state degeneracies.

1.5.3 A two-level system

We have a definition for the excitation temperature, but how can we actually calculate it?
We need to find the population ratio between two states. The simplest possible exercise here
is a two-level state, again with levels u and ℓ.

Two types of processes can induce transitions between the two states: radiative and colli-
sional. We can induce upward transitions with: Collisional excitation or absorption. We
can induce downward transitions with collisional de-excitation, spontaneous emission, or
stimulated emission.

The excitation temperature is determined by the level population ratio. We can use detailed
balance, derived above, but including collisions. In detailed balance, although not in strict
TE, the number of transitions out of a level must equal the number of transitions into that
level.

The transition rates are:
(1) Collisional excitation rate: Cℓunℓ

(2) Absorption rate: Bℓunℓuν
(3) Collisional de-excitation rate: Cuℓnu

(4) Spontaneous emission rate: Auℓnu

(5) Stimulated emission rate: Buℓnuuν

C here is the collision rate coefficient. The collision rate [s−1] is just the particle velocity
divided by the mfp,

C = nσv . (1.86)

In detailed balance, all excitations must be balanced by de-excitations, so

nℓ(Cℓu +Bℓuuν) = nu(Cuℓ +Buℓuν + Auℓ) (1.87)

1uν(T ) =
4π
c Bν(T ). The energy density has units of energy per volume per frequency unit.
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I will leave it as an exercise to show [hint: think of limit of Equation 1.87 when collisions
dominate, assume collisional and radiative processes are completely independent, and use

uν =
4π

c

2hν3

c2
1

ehν/kTR − 1
, (1.88)

to find

e−hν/k Tex =
e−hν/kTkCuℓ +

1
ehν/kTR−1

Auℓ

Cuℓ +
(

1
ehν/kTR−1

+ 1
)
Auℓ

(1.89)

Equation 1.89 has two limits:
(1) Collisions dominate, so Cuℓ ≫ Auℓ. Then

e−hν/k Tex ≃ e−hν/kTkCuℓ

Cuℓ

= e−hν/kTk (1.90)

So Tex = Tk. When collisions dominate, the level populations are in equilibrium with the
gas kinematic processes. This is the case in high densities.

(2) Radiation dominates, so Auℓ ≫ Cuℓ. Then

e−hν/k Tex ≃
1

ehν/kTR−1
Auℓ(

1
ehν/kTR−1

+ 1
)
Auℓ

= e−hν/kTR (1.91)

So Tex = TR. When radiation dominates (at low densities), the level populations are in
equilibrium with the radiation field.

Both of these can be in LTE! Remember: LTE just requires that the changes in temperature
are slowly varying.

1.5.4 Critical Density

The transition from Tex = TR to Tex = TK happens when collisional excitations balance
spontaneous emission:

C = nσv = Auℓ . (1.92)

Very approximately, this happens at a critical density ncrit of

ncrit ≃
Auℓ

σv
. (1.93)

Equation 1.93 assumes optically thin emission, which is frequently not appropriate. In reality,
often there is radiative trapping, which makes a particular transition optically thick to
its own radiation. Imagine background molecules radiating and that background radiation
exciting foreground molecules (instead of collisions). We will deal with this more complicated
scenario for CO in our chapter on molecules.
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We can think of the critical density as the density required to excite the atom or molecule
into a specific energy state. Critical densities are especially important for molecular line
observations. The (optically thin) critical density for CO J = 1 − 0 transitions is about
700 cm−3, while it is about 103 cm−3 for NH3.

Because the critical density is so important for interpreting spectral line emission, we have
some specialized vacabulary for discussing it. If Tex < TK , we say the level populations are
“subthermally excited.” When Tex ≃ TK , we say that the level populations are “thermal-
ized.”

Interestingly, in the optical TR can be much higher than Tex. Therefore, at densities less
than the critical density, optical emission lines can be bright if TR is larger than Tex, but
radio emission lines will be faint.

Figure 1.15: H I excitation temperature (“spin temperature”) as a function of density. We
see that at low densities, collisions are unimportant and Ts ≃ TR (TR written as TB here).
At high densities, collisions are important and Ts ≃ Tk. The critical densities occur at spin
temperatures between TR and Tk.
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1.5.5 Revisiting Tex

The excitation temperature is in between the radiation temperature and the kinetic temper-
ature. We can solve Equation 1.89 to find

1

Tex
=

1
Tk

+ Auℓ

Cuℓ

TR

T0

1
TR

1 + Auℓ

Cuℓ

TR

T0

(1.94)

where T0 = hν/k [Rohlfs & Wilson, 11.4.].

Note that Tex is not the average between Tk and TR. Written this way, the excitation
temperature is a harmonic mean between the radiation and kinetic temperatures weighted
by the relative collisional and radiative de-excitation terms. The weighting factor in the
harmonic mean is the ratio of the density to the critical density. However, note that this
factor is multiplied by an additional factor of TR/T0. If stimulated emission is important,
T0 ≪ TR, and the density must be much larger than ncrit to produce visible emission lines.

It is worth rewriting this equation once again, since it can be solved to give

Tex = TK
(TR + T0)Auℓ + CuℓT0

AuℓTK + CuℓT0
(1.95)

At low radio frequencies, (TR+T0) ≃ TR. We see again that ifAuℓ ≫ Cuℓ, Tex = TR+T0 ≃ TR,
and Cuℓ ≫ Auℓ, Tex = TK .

The location of ncrit along the varying portion of the curve depends on the importance of
stimulated emission. Or, the difference between Tex at n = ncrit and Tk tells you about
stimulated emision. If there is a large difference, stimulated emission is important (low
frequencies).

[Pogge notes] For example, take the excitation temperature as a function of density for two
molecular lines: the CS J=3-2 147GHz line and the NH3 (J,K)=(1,1) 23GHz line. This
CS line has a critical density of 1.5 × 106 cm−3, and reaches an excitation temperature of
0.9Tk at n > 106 cm−3. However, the NH3 line has a critical density of 2 × 103 cm−3, but
the excitation temperature does not approach the kinetic temperature until n > 105 cm−3,
nearly 3 orders of magnitude larger. The reason is the greater importance of stimulated
emission at low frequencies compared to at high frequencies. In general, if T0 = hν/k ≪ Tk,
the density must be much larger than the critical density in order for the line to be visible.
As such, the density must be very large compared to the critical density to thermalize lines
at centimeter wavelengths (like the NH3 transition noted above), while at millimeter and
sub-millimeter wavelengths, the lines of species like CO and CS are essentially thermalized
at or near their critical densities. By the time you get to Infrared and Visible wavelengths
stimulated emission becomes negligible and all collisionally excited lines thermalize at ncrit.

We will revisit these concepts in our chapters on atomic and molecular gas.
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1.5.6 Emission and Absorption Coefficients (Draine 7.3)

The meaning of jν and κν are a bit difficult to discern, so let’s unpack them a bit. I will
revisit this discussion frequently, so don’t be too worried if it doesn’t make sense at first.

We can write a general form for the emissivity in the case of isotropic radiation as

jν = nu
Auℓ

4π
hνuℓϕν (1.96)

where ϕν is the normalized line profile,
∫
ϕν dν = 1 (more on this later). This line profile tells

us about the shape of the spectral line (usually assumed to be Gaussian), as a function of
frequency. What this is saying is that the emissivity (units erg cm−1 sr−1 s−1) is proportional
to the Einstein A the frequency, and the density in the upper state. At line center, ϕν is at
maximum, and so is jν ; both fall off after that. We see that as Auℓ increases, jν increases –
as transitions become more frequent we get more total power.

Note that the presence of stimulated emission alone does not mean that it is dominant, and
the source is a maser! Stimulated emission is always present at some level. Only when it is
dominant do we consider the source to be a maser.

The absorption coefficient is just absorption minus stimuated emission (“negative absorp-
tion”). Pure absorption looks like:

κν,absorption =
hν

4π
Buℓnℓ , (1.97)

whereas stimuated emission looks like

κν,st.emission ∝ Bℓunu (1.98)

and using the Boltzmann equation and our earlier relationship between Einstein B coefficients
we find

κν,st.emission ∝ Buℓe
−hνuℓ/k Tex . (1.99)

Using our relationship between Buℓ and Auℓ in Equation 1.84, the total linear absorption
coefficient is just the absorption minus the stimulated emission (“negative absorption”).
Draine does a nice derivation to get:

κν = κν,absorption − κν,st.emission = nℓ
gu
gℓ

Auℓ

8π
λ2uℓϕν

[
1− e−hνuℓ/k Tex

]
. (1.100)

The terms before the bracket should all be familiar. The “1” inside the brackets refers to
absorption, which depends on the density in the lower state, the Einstein A, the ratio of
the degeneracies, and the frequency of the transition. The second term inside the brackets
is due to stimulated emission. If e−hνuℓ/k Tex ≃ 1, stimulated emission is important! When
does this happen? When −hνuℓ/k Tex ≲ 0. The stimulated emission term is larger when
the frequency of the transition is low, or when Tex is large, or when Tex is negative. When
Tex is negative, κν is also negative. This is a maser. [Draine likes some terms of ν and some
of λ for some reason.]
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Again applying Boltzmann, we can find that the source function is:

Sν = jν/κν =
nuhν
4π

Auℓ

c2

8πν2
Auℓnu [ehν/k Tex − 1]

(1.101)

which reduces to

Sν =
2hν3

c2
1

ehν/k Tex − 1
. (1.102)

The source function of a spectral line is the Planck function at a temperature of
Tex. This is not the intensity, but just the source function. The intensity will be the source
function modified by the optical depth.

Let’s remember our solution to the equation of radiative transfer in the case that the source
function is constant

Iν(τν) = Iν,0e
−τν + Sν(1− e−τν ) , (1.103)

or in the radio regime
T = T0e

−τν + Tex(1− e−τν ) . (1.104)

Note that our T that replaced the source function is actually the excitation temperature via
Equation 1.102. In LTE, Tex = Tk and

T = T0e
−τν + Tk(1− e−τν ) . (1.105)

1.5.7 Line Broadening

Emission and absorption lines are not delta functions, they are broadened by some mechamisms.
What can broaden spectral lines?
1) Thermal doppler motion due to gas particles at a given temperature, “Doppler broaden-
ing.” Not all particle speeds will be the same of course. As the temperature increases, the
range of speeds does too.
2) “Turbulent broadening” due to the fact that there are bulk motions within any gas.
3) Natural broadening due to the fact that the energy “level” is not a single value, and
4) Pressure or collisional broadening, which changes the energy levels.

Each of these mechanisms has an associated line shape. Doppler broadening is Gaussian,
and turbulent is usually assumed to be Gaussian as well. Natural and Collisional broadening
are “Lorenzian,” which is like a Gaussian but with much larger “wings.” All four processes
operate at the same time, resulting in a “Voigt” profile with a Gaussian core and Lorentzian
wings. Since the Lorentzian wings are at low intensity, usually a Gaussian is observed.

Gaussians are magical functions. A normalized Gaussian takes the form of

ϕ(ν) =
1

σ
√
2π

e
−
(

(ν−ν0)
2

2σ2

)
. , (1.106)

where ν0 is usually the line center and σ is the one-dimensional velocity dispersion. You can
see that the line will be of maximum intensity when ν = ν0 at line center, then ϕ(ν0) =

1
σ
√
π
.
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We can also define the full-width at half-maximum (FWHM) as

FWHM =
√
8 ln2σ = 2.355σ . (1.107)

For thermal gas with particles of mass m following a MB distribution,

σ =

(
kT

m

)1/2

= 9.12

(
T4

m/amu

)1/2

km s−1 . (1.108)

The constant goes to 21.47 km s−1 for the FWHM.

The thermal line width increases with increasing temperature and decreases with increasing
mass. Think of H I!

Gaussians have the amazing property that the area under the curve is approximately the
FWHM times the peak. They are also their own Fourrier transform pair, and a Gaussian
convolved with a Gaussian leads to another Gaussian. This last point is very important in
astronomy. Frequently, the response of your instrument can be assumed to be Gaussian, and
the source or spectral line Gaussian as well. Therefore, you will observe a Gaussian.

Why do we get Gaussians? We had the MB velocity distribution before:

f(v) =
( m

2πkT

)3/2

4πv2e−mv2/2kT . (1.109)

What you have probably never seen is that in 1D the 4πv2 term goes away. This term
arises in 3D due to the density of velocity states available (see Hyperphysics site). This is a
Gaussian!

We can define:

σv =

(
kT

m

)1/2

= 9.12

(
T4

m/amu

)1/2

km/s , (1.110)

where T4 is the temperature in units of 104K. The FWHM is 2.355σ, or

FWHM = 2.355σ = 21.47

(
T4

m/amu

)1/2

km/s . (1.111)

This leads to:

f(v) =
1√
2π

1

σv
e−u2/2σ2

v . (1.112)

You can see how the velocity dispersion σv goes into the Gaussian.

We can assume that turbulence adds another Gaussian term, and we can add the thermal
and turbulent components in quadrature, which leads to

σ =

(
kT

m
+ v2turb

)1/2

, (1.113)
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We often don’t know vturb, but given a spectral line we can determine it from the linewidth
if we can estimate the temperature.

The natural width arises due to the uncertainty principle: ∆E∆t ∼ ℏ. Here, ∆t = A−1
uℓ , so

short-lived states have large uncertainties in energy. Because Auℓ ∝ ν3, ∆E ∝ ν3. Natural
broadening is important at high frequencies. It gives rise to a Lorentzian profile function

ϕ(ν) =
γ

4π2

1

(ν − ν0)2 + (γ/4π)2
, (1.114)

where γ is a constant for each species related to the spontaneous decay rates

γ = ΣAuℓ. (1.115)

Like natural broadening, collisional broadening distorts the energy levels, leading to an
additional Lorentzian term that can be combined with natural broadening:

ϕ(ν) =
Γ

4π2

1

(ν − ν0) + (Γ/4π)2
, (1.116)

where Γ = γ + 3νcol , and νcol is the collision frequency, νcol = nσv.

In the radio, Doppler and turbulent broadening are typically the largest. At high frequencies
(X-ray), natural braodening can make a large contribution.

1.5.8 Characterizing Spectral Lines

It is often preferable to fit a line profile to a spectral line in order to characterize its emission.
An alternative method, called the “equivalent width,” is insensitive to the exact profile. The
equivalent width is the width, in wavelength or frequency units of a rectangular area equal
to that of the spectral line:

Wλ =

∫
(1− Fλ/F0)dλ (1.117)

The intensity of a spectral line changes with the optical depth at line center. This is usually
parameterized as the change in the optical depth, or the change in “column density,” the
integral of the number density over the pathlength.

Let’s assume we have an absorption line and no source function:

Iν
Iν,0

= e−τν (1.118)

Initially, the more absorbing atoms there are, the stronger the absorption line. If we keep
adding absorbers to the path, however, eventually the line will saturate. A saturated line
means that at line center (the most probable speed in a MB distribution) no more intenisity
can be added. After it saturates, the equivalent width grows slowly, because there are few
atoms with the requisite speeds, until the growth of the line wings becomes important.
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Figure 1.16: Equivalent width.

Figure 1.17: Line saturation for various optical depths
(http://spiff.rit.edu/classes/phys440/lectures/curve/curve.html).
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Figure 1.18: The curve of growth. The x-axis is parameterized in terms of the oscillator
strength, which is a parameter unique for each transition.

The column density is a fundamental quantity in astronomy, since it is directly related to
what we measure. Since κν ∝ n and τν =

∫
κν ds, τ ∝

∫
n ds = N . This is the number of

particles along a 1 cm2 cylinder path.

This leads to three important regimes:
1) The “Linear” regime (τ ≲ 5) where the equivalent widthW is proportional to the column
density, W ∝ N .
2) The “saturated” regime where W ∝

√
lnN , and

3) The “damping” regime where collisional broadening takes over, W ∝
√
N .

[Reading for next time, Draine Chapter 8]



Chapter 2

Basics of HI

The ISM is primarily hydrogen (60% of all gas), and the hydrogen is primarily in its atomic
state. We are fortunate to be able to detect an emission line from Hydrogen: the 21 cm line.
This is the most important line in all of astrophysics, because it allows us to discern the
total mass of galaxies, and because it is so bright that we can detect it across much of the
Universe.

The 21 cm H I line is caused by a hyperfine spin-flip transition. This is not an “allowed”
transition because it violates the electric dipole selection rules! It is magnetic dipole rather
than electric dipole radiation. The electron spin can either be aligned (high energy configu-
ration) or anti-aligned (low energy configuration) with that of the proton. The electron spin
will flip occasionally, in the transition from the S = 1 level to the S = 0 level. The difference
in energy is only 5.87× 10−6 eV.

Just like the electrons, the nuclei have an intrinsic spin angular momentum, which we denote
I⃗. Summing over all the nucleons:

I⃗ =
∑
i

s⃗i , (2.1)

where si is the spin of the ith nucleon.

If I⃗ is non-zero, the molecule will have an intrinsic magnetic dipole moment

µ⃗N = g
e

2Mc
I⃗ , (2.2)

where g is the “Landé g factor and M is the nuclear mass. The Landé g factor is

g = g(J, L, S) = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.3)

The dipole moment of the nuclear produces a magnetic field that interacts with the dipole
moment of the electrons. This interactions adds additional internal energy to the atom and
splits the levels into “sublevels.” These sublevels are known as “hyperfine states.”

47
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Figure 2.1: Fine-structure and hyperfine splitting for hydrogen (from Wikipedia).

We use a new quantum number F

F⃗ = |I⃗ + J⃗ | (2.4)

It has values as you would expect. Say you have a 3D3 atom in the J = 3 state with I = 2,
then F = 1, 2, 3, 4, 5. In other words, the 3D3 energy has 5 hyperfine splittings.

When do we get hyperfine splitting? When there is a non-zero nuclear spin. Obviously, odd
numbers of nucleons give non-zero nuclear spins. Even numbers of nucleons usually, but
don’t always, have zero nuclear spin.

The most famous hyperfine transition is that of H I of course. For H I, I = 1/2 and J = 1/2,
so F = 0, 1. The 21 cm line transition is from F = 1 → 0.

The H I line emits via magnetic dipole radiation. By analogy with the Einstein A for electric
dipole radiation,

Auℓ =
64π4

3hc3
ν3uℓ|µuℓ|2 , (2.5)

the Einstein A is

Auℓ =
64π4

3hc3
ν3uℓ|µ∗

uℓ|2 , (2.6)

where µ∗
uℓ is the mean magnetic dipole moment for H I in the ground electronic state. With

a value for this constant, the Einstein A for the H I line is Auℓ ≃ 2.85 × 10−15 s−1. The
radiative lifetime is therefore about 11 Myr. We only see H I emission because there is so
much H I.

The “spin temperature” is an important parameter in the study of H I gas, as it can be
readily derived from observations (with some assumptions). For H I, Tex is referred to as
the “spin temperature,” Ts. In LTE, the spin temperature is approximately the kinetic
temperature of the gas. The Boltzmann factor gives us the level populations for a given
excitation temperature.
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The Boltzmann factor is:
nu

nℓ

=
gu
gℓ
e−hνuℓ/kTs . (2.7)

We know νuℓ is at 21.11 cm/c, and hνuℓ/k = 0.0682K. This low energy difference means that
the electron is easily excited into the aligned state (by collisions or the CMB).

Let’s talk about degeneracy. The electron spin can be aligned, or anti-aligned with the
proton in the nucleus. The anti-parallel state has lower energy. For Hydrogen in the L = 0
state, the degeneracy is 2S + 1. For the S = 1 state, it is 3, and for the S = 0 state it is 1.
So...

nu

nℓ

=
gu
gℓ
e−hνuℓ/kTs ≃ 3 . (2.8)

What does this mean? The upper energy state has three times the atoms as the lower
energy state, and this is independent of the spin temperature! Therefore, nu ≃ 3/4nT and
nℓ ≃ 1/4nT , where nT is the total H I population in all states..

We can rewrite a general form for the emissivity

jν = nu
Auℓ

4π
hνuℓϕν (2.9)

where ϕν is again the normalized line profile,
∫
ϕν dν = 1. We here are interested in ϕν at

line center where ϕν is at a maximum. Plugging in our relations above:

jν ≃ 3

16π
Auℓhνuℓn(HI)ϕν . (2.10)

Since most everything on the right hand side is a constant, the emissivity basically only
depends on the density of H I atoms! This is a crazy result.

We can also rewrite our linear absorption coefficient:

κν = nℓ
gu
gℓ

Auℓ

8π
λ2uℓϕν

[
1− e−hνuℓ/kTs

]
. (2.11)

Since e−hνuℓ/kTs ≃ 1, stimulated emission is important! For example, for νuℓ = 1420 MHz
and Ts = 100 K, we find exp(6.815×10−4) = 0.9993. We can Taylor expand the exponential
to get

κν ≃ 3

32π
Auℓ

hcλuℓ
kTs

n(H I)ϕν . (2.12)

The absorption coefficient κν ∝ 1/Ts.

As the spin temperature goes up, the attenuation (and the optical depth) goes down. What
this means is that cold H I does the absorbing. Draine derives the optical depth for Gaussian
line profiles:

τν = 2.190
N(H I)

1021 cm−2

100K

Ts

km s−1

σV
e−u2/2σV , (2.13)

where N(H I) =
∫
n(H I) ds is the column density and u is the velocity offset from line center,

u = vr − vr,0.



50 CHAPTER 2. BASICS OF HI

We frequently have spin temperatures of 100K and column densities > 1021 cm−2. Therefore,
the attenuation and the optical depth can be very high. What is causing the optical depth?
It is “self-absorption,” absorption of H I by H I. This shows up as dark patches. [show papers].
http://adsabs.harvard.edu/cgi-bin/nph-bib query?bibcode=2005ApJ...626..195G&db key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib query?bibcode=2002ApJ...566L..81J&db key=AST

Imagine we have two clouds at different distances. Under what conditions will be observe
self-absorption?

2.1 Kirchoff’s Laws Applied to HI

H I can be observed in emission or in absorption. (This is true for many astrophysical
emission mechanisms.) Kirchoff’s laws tell us that we see emission from a diffuse gas and
absorption from gas in front of a background continuum source. But there is always a
background continuum source, the CMB! And we see lots of emission lines, so there must be
some additional criterion when we get absorption lines.

In the radio regime, we often do on/off observations where the background off data are sub-
tracted from the on-source data. This effectively removes the sky and telescope background.

Recall the solution to the equation of radiation temperature in the case of a constant source
function in terms of brightness temperature:

T on
B = TB,0e

−τν + Ts(1− e−τν ) . (2.14)

In many cases, the background TB,0 is 2.7K, from the CMB, but if there is a background
radio source of course this is brighter than the CMB. I superscipted TB with “on” to indicate
that the observation is in the direction of interest. Observations always need a reference to
remove sky and instrument artifacts.

Looking just off the H I cloud we only see the background unattenuated by the cloud:

T off
B ≃ TB,0 , (2.15)

so the difference in the source and background radiation, is

∆TB = TB,0e
−τν + Ts(1− e−τν )− TB,0 = (Ts − TB,0)(1− e−τν ) (2.16)

There are three regimes of spin temperature:
Ts = TB,0 : ∆TB = 0. No line is visible.
Ts > TB,0 : ∆TB > 0. Line appears in emission.
Ts < TB,0 : ∆TB < 0. Line appears in absorption.

What this is telling us is that H I with low Ts can be seen in absorption against background
continuum sources. This is the cold neutral medium (CNM). It is seen in emission in the
absence of bright background sources. H I with high Ts is always seen in emission. This is
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the “warm neutral medium,” WNM. Observations along a sight line toward a bright quasar
will therefore in general have both emission and absorption components.

The famous “Millennium” experiment explored H I absorption toward background radio
sources: http://adsabs.harvard.edu/abs/2003ApJS..145..329H
http://adsabs.harvard.edu/abs/2003ApJ...586.1067H

2.2 Optically thin cloud - deriving the Column Density

If the optical depth is low and we can neglect absorption,

Iν(τν) = Iν,0 +

∫
jν ds = Iν,0 +

3

16π
AuℓhνuℓϕνN(H I) . (2.17)

If Iν(0) is known or can be estimated, we can integrate over the line profile to get the total
H I emission. ∫

[Iν(τν)− Iν,0] dν =
3

16π
AuℓhνuℓN(H I) (2.18)

We can switch to antenna (TA) or brightness (TB) temperature (both are linear with Iν) and
evaluate the constants to get:∫

[TB − TB,0] dv = ∆TB dv = 54.89Kkm s−1 N(H I)

1020cm−2
. (2.19)

The integration here is over the line profile, in velocity. This is a pretty incredible expression.
What this is saying is that the integrated intensity (the intensity integrated over the H I

line profile), is directly related to the HI column density. There is no dependence on spin
temperature (assuming self-absorption is not important).

As a function of velocity, this is

dN(H I)

dv
= 1.813

∆TB(v)

K
× 1018cm−2

km s−1
, (2.20)

assuming optically thin τ ≲ 0.1. Integrated over the line we have

N(H I) =
1.813× 1018 cm−2

K kms−1

∫
∆TB(v) dv . (2.21)

Since the column density is directly related to the mass, we can directly measure the mass
of a Galaxy using observations of H I:

MHI = 4.945× 107 M⊙

(
DL

Mpc

)2
Fobs

JyMHz
. (2.22)
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where DL is the “luminosity distance” to the source (the distance derived from its magni-
tudes) and Fobs is the observed flux density in Jy. Note that, following Draine, I switched
from temperature to flux density units. As you learned in radio astronomy, one can easily
switch back and forth between temperature and flux density. Instead of MHz, we can convert
to velocity units using

∆νobs
νobs

=
∆v

c

1

1 + z
(2.23)

so

MHI = 2.343× 105 M⊙(1 + z)−1

(
DL

Mpc

)2 ∫
Fobsdv

Jy km s−1
. (2.24)

2.3 Background Radio source - Measuring Ts (Draine

8.3)

We can measure the spin temperature of a cloud if the background radiation source is bright.
Assume we are observing two lines of sight through the same H I cloud: an “on” direction
toward a background radio source and an “off” direction that just passes through the cloud.
What makes a good background source? Something that emits a broad spectrum extending
through 21 cm. A quasar is perfect. H II regions are great too. In such cases:

T off
A = TA,0e

−τν + Ts(1− e−τν ) . (2.25)

Note that the “background” here is of actual emission; i.e., T off
A ̸= TA,0. Also note that I

switched to units of antenna temperature TA following Draine. On-source we have

T on
A = TRSe

−τν + Ts(1− e−τν ) , (2.26)

where RS stands for the (background) radio source. so

T on
A − T off

A = ∆TA = (TRS − TA,0)e
−τν (2.27)

and we can directly estimate the optical depth if the absorption is strong. We similarly can
get a relationship for the spin temperature.

With a little algebra (and switching from frequency to velocity), we find

τ(v) = ln

[
TRS − TA,0

T on
A (v)− T off

A (v)

]
(2.28)

and

Ts =
T off
A (v)TRS − T on

A (v)TA,0

(TRS − TA,0)− (T on
A (v)− T off

A (v))
(2.29)

When the absorption is strong, (TRS − TA,0) is larger than (T on
A − T off

A ) and we can solve for
both Ts(v) and τ(v). If the absorption is weak, we can only get an upper bound on τ(v) and
a lower bound on Ts.
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Before, we derived the dependence of the column density on the line intensity, assuming
τν ≲ 0.1. If this in not the case, we can correct for self-absorption if τ(v) and Ts are known:

dN(H I)

dv
= 1.813

Tsτ(v)

K
× 1018cm−2

km s−1
, (2.30)

Figure 2.2: H I self-absorption schematic. The right panel shows self-absorption. (From
Dicky & Lockman, 1990

2.4 Galactic HI

This is what a typical Galactic H I emission spectrum looks like when there is not much
material along the line of sight:

Figure 2.3: H I emission seen toward the outer Galaxy. The spectrum is taken in the “Local
Standard of Rest,” LSR frame. LSR is the circular velocity about the Galactic center at the
location of the Sun.

Each Galactic H I cloud emits its own H I profile at a particular velocity. A typical Galactic
H I spectrum does not show distinct lines. Why not? The main reason is that H I emits
at all allowed velocities. Distinct H I lines are therefore smeared out by Galactic rotation.
Along a line of sight, we get emission from all the various H I clouds, leading to the spectrum
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in Figure 2.3. First we should understand the basics of Galactic rotation. This is just the
basics, take a look at Carroll & Ostlie, Chapter 24 for more background.

Figure 2.4: The geometry used when describing Galactic rotation.

Our Galaxy rotates. Defining the angular velocity curve:

Ω(R) =
Θ(R)

R
, (2.31)

where Θ(R) is the velocity curve and R is the Galactocentric radius, the distance from
the Galactic center. This of course assumes an axis-symmetric rotation curve. For circular
rotation, we can derive

vr = (Ω(R)− Ω0)R0 sin ℓ , (2.32)

where R0 is the Galactocentric radius of the Sun, 8.5 kpc, and ℓ is the Galactic longitude.

It turns our that our Galaxy rotates differentially. All parts of the disk in the midplane
rotate with about the same linear speed, 235 km s−1 (Reid et al., 2014). As we look across
the Galactic disk, we see parts of the Galaxy rotating radially toward and away from the
Sun (with maximum, but never seen, values of 235 km s−1), and parts rotating completely
tangentially at 0 km s−1. Different measured radial velocities correspond to different dis-
tances. Measuring the radial velocities of a cloud of gas for example leads to measurements
of distances, assuming we know how the Galaxy rotates.

In order to make sense of the above equation, we need to know Ω(R). A good assumption
backed up by observations is that Θ(R) ≃ const = 235 km s−1, so Ω(R) = 235 km s−1

R
. Differ-

ent forms of Ω(R) are called “rotation curves.” Along a given line of sight, the law of cosines
says

R2 = R2
0 + d2 − 2R0d cos ℓ , (2.33)
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Figure 2.5: The rotation curve of the Milky Way as derived from massive star formation
regions. Outside of a few kpc from the Galactic center, it is essentially flat. Figure from
Reid et al. (2014).

so we can convert easily between d, the distance from the Sun, and R, the distance from the
Galactic center. In general, for a given line of sight the absolute value of the radial velocity
increases with decreasing R.

Figure 2.6: LAB H I integrated over the entire sky, in Galactic coordinates. The Galactic
plane is clearly visible.

In the inner Galaxy, when the sight line crosses many values of R, the absolute value of the
radial velocity versus distance curve increases, then decreases. Outside of the Solar orbit,
the sign of the radial velocity curve is inverted. In the Outer Galaxy, as R increases with d,
the absolute value of vr just increases. Heliocentric distances are more difficult to determine
in the inner Galaxy compared with the outer Galaxy, although Galactocentric distances can
be found for any spectral line.

2.5 Extragalactic HI

Figure 2.9 shows a typical spectrum from an unresolved galaxy:
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Figure 1. from Resolution of the Distance Ambiguity for Galactic H II Regions
ANDERSON & BANIA 2009 ApJ 690 706 doi:10.1088/0004-637X/690/1/706
http://dx.doi.org/10.1088/0004-637X/690/1/706
© 2009. The American Astronomical Society. All rights reserved.

Figure 2.7: Inner Galaxy rotation curves.

Figure 2.8: The velocity field of the Milky Way from our vantage point.



2.6. DRAINE CHAPTER 30: THE TWO-PHASE HI 57

Figure 2.9: H I from an unresolved galaxy. The peaks (“horns”) are caused by the low optical
depth of H I and the flat rotation curve of galaxies.

Resolved observations of course have a wealth of information, but we will keep it simple here
with an unresolved galaxy. In this case, all the emission from the galaxy is contained in
this single spectrum. We get the “double-horn” profile because all spiral galaxies have, to
first order, flat rotation curves. There is therefore lots of material moving at two particular
velocities, the high and low velocities of the system. Your homework asks you about the
optical depth of such a galaxy. An upcoming homework will ask you to relate this profile to
the mass of the galaxy.

2.6 Draine Chapter 30: The Two-Phase HI

The temperature of H I (and all materials in the ISM) is determined by the balance between
heating and cooling. As we saw in the Heiles & Trolund papers, there are two phases for
H I: the CNM and WNM. These are in pressure equilibrium.

We can denote the “heating function Γ. What causes H I heating?
Ionization by cosmic rays
Photoionization of H and He by x-rays
Photoionization of dust grains by starlight U Photoionization of C, Mg, Si, Fe, etc by starlight
UV
Heating by shock waves and other MHD phenomena
Draine gives expressions for all these.

Cooling on the other hand is dominated by metal lines, in particular, 63µm OI and 158µm
CII. We can define a “cooling function” Λ in units of erg cm−3 s−1; Figure 30.1 shows the
cooling function as a function of temperature. You can see that the [OI] line dominates for
higher densities and the [CII] line for lower densities. We’ll get to these lines later.

The critical densities for these lines are ∼ 4 × 103 cm−3 for [CII] and ∼ 1 × 105 cm−3 for
[OI]. [What does this mean? Collisional de-excition is unimportant] For these lines, the
transitions are collisionally excited (more efficient as density increases), then spontaneously
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emit. The heating and cooling balance leads to characteristic temperatures of the CNM and
WNM.

Figure 2.10: Cooling curves as a function of temperature for two densities in the ISM (from
Draine book).

As shown in Draine Figure 30.2(a), we can calculate steady-state temperatures as a function
of nH . From this we see that the steady state temperature decreases as nH increases. This
is due to increases in the efficiency of cooling due to [OI] and [CII].

In a steady state ISM, everything must be in pressure equilibrium. Figure 31.2(b) shows
that at low pressures, heating balances cooling at T ≃ 6000K (WNM) and at high pressures
at T ≃ 100K (CNM). These two solutions are stable, but in between it is unstable.

It is often easier to think of density versus pressure, where the curve is functionally the same
since p/k = nT . Looking at the unstable solution, if the density of the gas is somehow
decreased, the pressure increases and the cloud expands. This expansion will lower the
pressure until it gets to the WNM position. This is the “two-phase” H I.

It is entirely possible that the pressure of the ISM does not include the unstable range, but
observationally we find that is more or less does. This does break down at high z off the
plane though where essentially all the H I is in the WNM phase.

This site has some good additional information on the two-phase H I:
http://www.ifa.hawaii.edu/ jpw/classes/ast622.fall2009/handouts/twophase.html

2.7 HI Oddities

We have by now explored most of the characteristics of H I in the ISM, but there are a
number of peculiar features that you should know about. (see slides “HI Oddities.pdf” for
pretty pictures).

2.7.1 Superbubbles

https://en.wikipedia.org/wiki/Superbubble
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Figure 2.11: Heating by cosmic rays and photoelectric heating by dust grains produce the
solid lines. For the given heating and cooling, we expect the neutral ISM gas to be found
along these curves. Dashed and dotted lines show constant nHT . In the right panel the
same curves are shown. In the pressure range 3200 ≲ p/k ≲ 4400 cm−3 K there are three
possible equilibrium points: the CNM and WNM solutions, and also an unstable equilibrium
solution.

Superbubbles are large H I shells filled with plasma in a high ionization state. They are
created from the combined work of OB stars and supernovae.

Notable examples: Orion-Eradinus (see paper by Carl Heiles), Local Bubble

2.7.2 Riegel-Crutcher Cloud and Other Cold Absorbing Clouds

[NMG slides+paper, Gibson paper]
We can investigate the CNM in absorption if background continuum emission is strong
enough. This usually limits our sight lines to those toward background AGN, BUT the
Galactic center is a very strong continuum source as well. The Riegel-Cruther (R-C) Cloud
is a cold H I cloud seen toward the Galactic center (see paper by Naomi McClure-Griffiths
and the accompanying slides). We can work out the spin temperature of this cloud using
the difference between two positions. First, we assume that the background continuum is
behind the cloud, and uniform between on- and off- measurements. We allow for three
H I components along the line of sight: foreground (Ts,fg, τν,fg), the Reigel-Crutcher cloud
(Ts, τν), and background (Ts,bg, τν,bg). The Galactic center continuum has temperature Tc.
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At the location between the background cloud and the R-C cloud:

Ton,2 = Tce
−τν,bg + Ts,bg(1− e−τν,bg) (2.34)

Between the R-C cloud and the foreground cloud:

Ton,1 = Ton,2e
−τν + Ts(1− e−τν ) (2.35)

Ton,1 =
[
Tce

−τν,bg + Ts,bg(1− e−τν,bg)
]
e−τν + Ts(1− e−τν ) (2.36)

and finally at the observed location we have

Ton = Ton,1
[
e−τν,fg + Ts,fg(1− e−τν,fg)

]
(2.37)

Ton =
[
Tce

−τν,bg + Ts,bg(1− e−τν,bg)
]
e−τν + Ts(1− e−τν )e−τν,fg + Ts,fg(1− e−τν,fg)(2.38)

Ton = Tce
−(τν,bg+τν+τν,fg) + Ts,bg(1− e−τν,bg)e−(τν+τν,fg) + Ts(1− e−τν )e−τν,fg + Ts,fg(1− e−τν,fg)(2.39)

and similarly off the RC cloud

Toff = Tce
−(τν,bg+τν,fg) + Ts,bg(1− e−τν,bg)e−τν,fg + Ts,fg(1− e−τν,fg) (2.40)

so therefore after some algebra

∆T = Ton − Toff = (Ts − Ts,bg(1− e−τν,bg)− Tce
−τν,bg)e−τν,fg(1− e−τν ) (2.41)

Defining p = Ts,bg(1− e−τν,bg)/Toff and letting τν,bg and τν,fg be small relative to τν we find

∆T = (Ts − Tc − pToff)(1− e−τν ) (2.42)

and therefore

τν = − ln

(
1− ∆T

Ts − Tc − pToff

)
(2.43)

This is all in Gibson et al. (2000). So we can get the optical depth with some knowledge or
assumptions of the value of the p parameter.

2.7.3 High Velocity Clouds (incl. the Magellanic Stream)

High Velocity- clouds have velocities that deviate from that expected due to Galactic rota-
tion. They are massive, reside in the halo, and take up a significant portion of the sky.
https://en.wikipedia.org/wiki/High-velocity cloud
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Figure 2.12: HVCs from http://www.atnf.csiro.au/people/Tobias.Westmeier/research hvcsky.php
made using LAB data.
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Chapter 3

Molecules

There are over 100 molecules detected in the ISM. Each has strengths and weaknesses for
learning about the ISM. [Rohlfs & Wilson Table]

How do molecules radiate? Molecular transitions are quantized, and therefore give rise to
line emission. This line emission is quite a bit more complicated than that of H I because of
the multitude of ways that molecules can radiate.

A non-exhaustive list of interactions within molecules includes:
1) Rotational lines due to rotation of a molecule about an axis
2) Vibrational lines due to the vibration of atoms in a molecule
3) “Inversion” transitions caused by QM tunneling within a molecule
4) Ro-vibrational (or “rotovibrational” = much more awesome name) transitions when the
vibration frequency is the same as the rotation frequency. Each of these methods has as-
sociated energies, and therefore frequency ranges where they are detectable, as we will see
later.

Let’s just take a quick look at electronic transitions. Even in just the simplest case of
diatomic hydrogen, we could have Coulomb electronic interactions of :
1) Electron 1 interacting with electron 2
2) Electron 1 interacting with proton 1
3) Electron 1 interacting with proton 2
4) Electron 2 interacting with proton 1
5) Electron 2 interacting with proton 2
6) Proton 1 interacting with proton 2. You can imagine how complicated things can get for
larger molecules.

The Coulomb force dominates these interactions, but magnetic interactions occur as well.
Furthermore, this list neglects the important vibrational and rotational emission mechanisms
(described later). While for atomic hydrogen, we only have line emission from electronic tran-
sitions and the H I spin-flip transition, for molecular hydrogen, there are numerous additional

63
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mechanisms for molecules that we have to consider.

It is worth noting that just like for atoms, molecular transitions have selection rules. Electric
and magnetic dipole have ∆J = 0,±1. The others are given here:
https://en.wikipedia.org/wiki/Selection rule.

3.1 Energies of Molecules

How can we make any progress in this situation? The key is that the energies of molecules
can be separated into various terms. Also, we know that electrons are about 2000 times
less massive than nuclei. We can therefore assume that the electrons are in motion, and the
nuclei are fixed. This is valid because the electrons complete many “orbits” in the time it
takes nuclei to complete only a small fraction of one. This “frozen nuclei” approximation
is known as the “Born-Oppenheimer approximation.” Born and Oppenheimer showed that
molecular energies could be expressed as powers of (me/M)1/2, where me is the electron mass
and M is the nuclear mass.

Let’s go through the most important molecular energies one-by-one. For all of these, I will
assume that the length scale is approximately a0, the Bohr radius, a0 = ℏ2/(me2). This is
obviously incorrect, but allows us to get order-of-magnitude results.

Electronic Energies arise from the Coulomb interaction of the electrons to the nuclei, and
have similar energies to those of atoms.

If we just use the energies from the Coulomb force:

Eelectronic ≃
e2

a0
(3.1)

where e is the elementary charge and a0 is the Bohr radius, the most probable distance
between the proton and electron in a ground-state Hydrogen atom.

For reasons that will be apparent later, I am going to write this as

Eelectronic ≃
e2

a0

(me

M

)0

. (3.2)

Vibrational Energies arise from oscillations of the nuclei around their equilibrium posi-
tions. This interaction is similar to that of two masses connected by a spring.

If we assume that the distance between the nuclei r0 ≈ a0, then to change the separation
between the nuclei by a distance a0 we have to expend energy on the order of the electronic
energy:

1/2Mω2a20 ≈
e2

a0
. (3.3)
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Ignoring the factor of 2 and plugging in our expression for a0,

ω2 ≈ e2

Ma30
, (3.4)

or

Evibrational = ℏω ≈ ℏe
M1/2a

3/2
0

=
ℏe

M1/2a0

m1/2e

ℏ
=

(me

M

)1/2 e2

a0
. (3.5)

Rotational Energies arise from motions of atoms about a rotation axis, the center of mass.

The moment of inertia for a diatomic molecule of size r0 ≈ a0 is:

I ≈ µr20 ≈Ma20 , (3.6)

where µ is the reduced mass. The angular momentum L will be approximately ℏ. Therefore,
using our expression for a0

Erotational ≈
L2

I
≈ ℏ2

Ma20
=

(me

M

) e2
a0

(3.7)

Since, m/M ≈ 10−4,
Eelectronic

Evibrational

≈ 102 (3.8)

and
Evibrational

Erotational

≈ 102 . (3.9)

As a result, electronic transitions are found in the optical/UV, vibrational in the IR, and
rotational in the radio (mm for light molecules and cm for heavier ones).

For the rest of our discussion on molecules, we will mostly ignore electronic transitions.

3.1.1 Rotational Transitions [From Cormac Purcell’s Thesis]

Classically, rotation is described in terms of the moment of inertia I about a particular axis:

I =
∑

mi r
2
i , (3.10)

where ri is the perpendicular distance of the i
th atom from the axis of rotation, and mi is its

mass. A molecule has associated moment of intertias about three axes (in three dimensions),
Ia, Ib, and Ic. The total kinetic energy is therefore:

E =
1

2
[ Ia ω

2
a + Ib ω

2
b + Ic ω

2
c ] , (3.11)

where ωa is the angular velocity in radians/sec about an axis ‘a’. Equation 3.11 may be
written in terms of the classical angular momentum, La = Ia ωa:

E =
L2
a

2Ia
+
L2
b

2Ib
+
L2
c

2Ic
, (3.12)
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Figure 3.1: Diagrams for various molecules (from Wikipedia). Top left shows methane (CH4;
symmetri rotor; top right shows carbon monoxide (CO; linear); bottom left shows ammonia
(NH3, symmetric rotor); bot ton right shows water (H2O, asymmetric rotor).

with the magnitude of the total angular momentum given by L2 = L2
a + L2

b + L2
c .

We can classify molecules based on their symmetry, because as we will see this symmetry
dictates the form of the rotational transitions.

Spherical Rotors: Ia = Ib = Ic, e.g.: CH4, SiH4.
Linear Rotors: Ia = 0, Ib = Ic, e.g.: CO, HCO+, HCN, HNC, N2H

+

Symmetric Rotors: Ia = Ib ̸= Ic, e.g.: NH3, CH3CN, CH3Cl.
Asymmetric Rotors: Ia ̸= Ib ̸= Ic, e.g.: H2O, CH3OH.

To emit or absorb radiation efficiently the molecule must have a permanent dipole moment,
µ1. Usually the dipole is an electric moment due to the asymmetric distribution of positive
and negative charges on a molecule. The electronic charge on spherical and homo-nuclear
linear molecules is evenly distributed and these molecules do not exhibit rotational dipole
transitions. Instead much weaker quadrupole lines are observed in the infrared, due to simple
collisional excitation. The quadrupole arises from the interaction of external electromagnetic
fields with the slightly asymmetric charge distribution in the nucleus.

3.1.2 Spectroscopic Notation

Conveniently, molecular spectroscopic notation is similar to that for atoms:

(2Σ+1)LJ,u/g , (3.13)

1Molecules without a permanent dipole moment can couple to external radiation fields via higher mo-
ments, e.g., H2 and N2 exhibit quadrupole transitions, however these lines are usually weak.
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L = Σ,Π,∆..., for L = 0, 1, 2..., where Λℏ is the projection of the electron orbital angular
momentum onto the inter-nuclear axis (like L for atoms), Σℏ is the projection of the electron
spin angular momentum onto the inter-nuclear axis (like S for atoms), J is the projection of
the total angular momentum along the inter-nuclear axis, and u/g gives the parity.

Just like in atoms, different states of Λ have different names. These follow the same letters
as for atoms, but using the capital Greek alphabet. For example, Λ = 0, 1, 2, and 3 give rise
to molecular electronic states Σ,Π,∆, and Φ.

As you may expect, the quantum number J⃗ = L⃗ + Σ⃗. Molecules with even values for J
are called “ortho,” and those with odd values are called “para.” Otho and para molecules
behave as distinct species, with distinct energy level diagrams. This is most important for
H2O, where the frequency differences of ortho and para transitions are important.

While not included in the notation, K is the projection of the total angular momentum onto
the principal axis; K = 0, ±1, ±2, . . . ± J .

3.2 Linear Molecules: CO Rotational Transitions

There are a wealth of different molecules, each with its own Einstein A coefficients and
critical densities, and of course they tell us different things about the ISM. We are going
to focus initially on CO, which is the most often used molecular gas tracer, due to its high
abundance and low critical density. We will first talk about rotational transitions, because
they are conceptually the easiest.

Why are we using CO? Hydrogen is the most abundant element, and when it is in the form
of atomic hydrogen, it is relatively easy to observe. However, at the high densities where
stars form, hydrogen tends to be molecular rather than atomic, and H2 is extremely hard to
observe directly. To understand why, we must review the quantum structure of H2.

[From Pogge’s notes] While the dominant molecular species in the ISM is H2, because it is a
homo-nuclear linear molecule with no permanent dipole moment all of the low-lying energy
levels are quadrupole transitions with small transition probabilities (A-values) and relatively
high excitation energies. Because it is homonuclear, there is no permanent dipole moment
and therefore no rotational transitions, only vibrational. The high excitation energies mean
that these transitions are only excited at high temperatures uncommon for most of the ISM
or in strong UV radiation fields (i.e., fluorescence). Thus the most abundant molecule in the
ISM, carrying most of the mass and playing a key role in excitation, thermal balance, and
gas-phase chemistry, is virtually invisible to direct observation.

The conclusion of this analysis is that, for typical conditions in star-forming clouds, we cannot
observe the most abundant species, H2, in emission. Instead, we are forced to observe proxies.
We will talk more about H2 at the end of our work on molecules.

In the sections below, we are going to use CO to explain some ways that we can use molecular
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line observations to derive physical quantities.

3.2.1 Rotational Energies

Consider a rigid diatomic molecule whose two atoms have masses mA and mB and whose
centers are separated by the equilibrium distance re. The individual atomic distances rA and
rB from the center of mass must obey

re = rA + rB and rAmA = rBmB . (3.14)

The rotational energy is

Erot =
1

2
Iω2 , (3.15)

or in terms of the orbital angular momentum L = Iω,

Erot =
1

2

L2

I
. (3.16)

The moment of inertia is simply

I =
∑

mir
2
i = (mAr

2
A +mbr

2
B) . (3.17)

So the net result is that we can derive a relationship between the rotational energy and the
orbital frequency given the masses and separations of the atoms. Note that the energies are
necessarily quantized because L is quantized.

Just like for atoms, molecules have selection rules. Here, selection rules require that ∆J =
±1. CO rotational energies are often given as:

EJ = hBJ(J + 1) , (3.18)

with the “rotational constant” B = h
8π2I

= 57.63596 GHz, where I is the moment of inertia.
This is known as a “rigid rotor” because as it rotates faster and faster the distance between
C and O is preserved. Rigid rotors therefore give rise to rotational energies

∆E = hBJ(J + 1)− hB(J − 1)J = hB(J2 + J − J2 + J) = 2hBJ (3.19)

or frequencies
νij = 2BJ , (3.20)
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where J is the upper rotational level.

Note that the frequencies for rigid rotor transitions are simply linear with J! We therefore
get a “ladder” of emission.

Figure 3.2: The CO “ladder” (from ERA course).

The rotation of CO causes centrifugal distortion. At higher rotational energies we can think
of the molecule as being pulled apart. This raises the moment of inertia and therefore lowers
the energy. To account for this, centrifugal distortion correction terms are added to the
rotational energy levels of the diatomic molecule.

EJ = h[BJ(J + 1)−DJ2(J + 1)2] (3.21)

and therefore the lines are at

ν ≃ 2BJ(J + 1)− 4DJ2(J + 1)2 (3.22)

For CO the value ofD is 0.1846066 MHz. The relative value of this constant tells you roughly
about its importance relative to B (which is about 50 GHz). An assumption underlying these
expressions is that the molecular vibration follows simple harmonic motion. In the harmonic
approximation the centrifugal constant D can be derived as

D =
h3

32π4I2r2kc
= 0.1835055 MHz , (3.23)

which is close to the true value above.

In real spectroscopy, one simply looks up the frequency of the transition of interest, which
has been derived in a lab.

3.2.2 Is CO Optically Thick?

[Draine Chapter 19.3] In order to use our observations to derive physical parameters, we
must determine if CO is optically thin or thick. We know that the attenuation coefficient κν
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is

κν = nℓ
gu
gℓ

Auℓ

8π
λ2uℓϕν

(
1− nu

nℓ

gℓ
gu

)
(3.24)

(Draine Eqn. 8.4). The nu

nℓ

gℓ
gu

term is sometimes written as e−hν/kTex . Remember: as written,
the “1” is from absorption and the “nu

nℓ

gℓ
gu
” is from stimulated emission. Assuming Gaussian

lines,

ϕν =
1

2π

c

νuℓ

1

σV
e−u2/2σ2

V (3.25)

so

κν = nℓ

(
1− nu

nℓ

gℓ
gu

)
λ2

8π

gu
gℓ
Auℓ

1√
2π

1

σV
e−u2/2σ2

V (3.26)

Since τ0 =
∫
κ0 ds, where the 0 subscript specifies line center,

τ0 ≃ κν0 R = nℓR

(
1− nu

nℓ

gℓ
gu

)
λ2

8π3/2b

gu
gℓ
Auℓ , (3.27)

where R is the cloud diameter (Draine says radius in my version of the text, but I think
diameter is correct), and b2 ≡ 2σ2

V . In typical units, after plugging in A10 = 7.16× 10−8 s−1,
this reduces to

τ0 = 297n3R19

[
n(CO)/nH

7× 10−5

] [
n(J = 0)

n(CO)

](
2 km s−1

b

)(
1− nu

nℓ

gℓ
gu

)
, (3.28)

where n3 and R19 are the density in units of 104 cm−3 and diameter in units of 1019 cm. But
to use this we need an estimate of the fraction of CO in the J = 0 state. You all know where
this is going....

We can modify the Boltzmann factor for CO using the partition function:

n(CO, J)

n(CO)
=

(2J + 1)e−hBJ(J+1)/kTex

ΣJ(2J + 1)e−hBJ(J+1)/kTex
(3.29)

Tex here is sometimes called the “rotation temperature,” in the same way that we use “spin
temperature” for H I. We can approximate

Z =
∑
J

(2J + 1)e−hBJ(J+1)/kTex ≃
[
1 + (kTex/hB)2

]1/2
(3.30)

We know B/k = 2.77K for 12CO, and since
(
1− nu

nℓ

gℓ
gu

)
= (1− e−hBJ(J+1)/kTex), therefore

τ0 ≃ 297n3R19

[
n(CO)/nH

7× 10−5

] [
(1− e−5.53K/Tex)

[1 + (Tex/2.77)2]1/2

](
2 km s−1

b

)
. (3.31)

or if we can assume Tex = 8K,

τ0 ≃ 46n3R19

[
n(CO)/nH

7× 10−5

](
2 km s−1

b

)
. (3.32)

The punchline here is that 12CO is usually optically thick, for reasonable values of n, R, and
b.
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3.2.3 Critical Density for CO and Radiative Trapping

CO is frequently optically thick. The radiation cannot escape from the cloud, and is trapped.
Therefore, emission from the upper level is absorbed within the cloud, leading to a strong
stimulated emission term. This emission is therefore observed to be less intense, and the
level populations are skewed such the the upper level is more populated. The excitation tem-
perature is above the kinetic temperature of the gas. This is known as radiative trapping
(Draine Ch. 19).

Draine works through a nice derivation called the escape probability approximation. A
full treatment would be very involved, but it turns out that the approximation is quite good.
The result is that the average escape probability ⟨B⟩cloud can be approximated as

⟨B⟩cloud =
1

1 + 0.5τ0
(3.33)

As you can imagine, this makes our old definition of the critical density useless. In the case
of optically thick clouds, we have to modify the critical density:

ncrit =
⟨βuℓ⟩Auℓ

Cuℓ

, (3.34)

where β is the escape probability. Authors have come up with an analytical expression for
the collisional de-excitation parameter

Cuℓ ≃ 6× 10−11 T 0.2
2 cm3 s−1 (3.35)

for 10 K ≲ T ≲ 250 K (Flower & Launay 1985; Flower 2001). For a cloud with density
1000 cm−3, R19 = 1 cm, b = 2 km s−1 (again, b2 ≡ 2σ2), and Tex = 8K, τ0 ≃ 50 and
⟨β⟩ = 1/(1 + 25) ≃ 0.04. Therefore,

ncrit,H2(CO, J = 1) =
⟨βuℓ⟩Auℓ

Cuℓ

≃ 50T−0.2
2 cm−3. (3.36)

This shows that the J = 1 level of CO is “thermalized” in molecular clouds with nH2 ≳
102 cm−3. Thermalized means that Tex ≃ TK . You can get a larger excitation temperature
at a lower density, effectively lowering the critical density. For optically thin clouds, we have
ncrit,H2(CO, J = 1) = 1100T−0.2

2 and we require much higher critical densities.

(This discussion is frequently absent in texts, but is very important because it shows that
CO is thermalized at densities far below the critical density. For further reading, see the
Shirley and Magnum articles in the “Articles” folder; also see below for a couple results from
the Shirley paper.)

3.2.4 CO Isotopologues

Since 12CO is optically thick, it cannot tell us all we need about the ISM. Luckily, there are
a few isotopologues (same atoms, different atomic weights) of CO that are frequently used:
13CO, C18O, and C17O.
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For rotational transitions,

ν =
hJ

4π2µr2e
(3.37)

We can see that as the reduced mass µ increases, the frequency decreases. The 12CO line
is at 115.271208GHz. Assuming re does not change, 13CO line must therefore be at [from
NRAO course]

µ(13C16O)

µ(12C16O)
=

13× 16/(13 + 16)

12× 16/(12 + 16)
= 1.0460 (3.38)

so

ν10(
13C16O) = ν10(

12C16O)×
[
m(13C16O)

m(12C16O)

]−1

= 115.271208/1.0460 = 110.204 GHz (3.39)

This is not quite correct though because re of course does also change (see centrifugal dis-
tortion term from before). The actual 13CO J = 1 → 0 frequency is 110.201354GHz. The
ratio of 12CO to 13CO should be around 90 [from Pogge notes] and 45 from Langer & Penzias
(1990) (this is a mean value for Galactocentric radii between 4 and 8 kpc). For reference,
C18O is at 109.782156GHz and C17O is at 112.359275GHz.

We want to have a nice, optically thin tracer to use to derive cloud masses, etc. 13CO is
ok for this, although it turns out to have an optical depth near unity, so sometimes C18O is
better. We can assume is that 13CO and 12CO both arise in the same regions, and so share
the same excitation temperature. If there are significant chemical fractionation effects, this
assumption could be invalid (e.g., if local chemistry affects the creation/destruction of 13CO
differently than that of 12CO).

3.2.5 Other Linear Molecules

The molecules most like CO have their atoms aligned along one axis. There are many other
linear molecules, notably all diatomic molecules (CS, CF, HF, SiO, etc.). Other good linear
molecules are the carbon chain molecules like HCN, HC11N, etc.

Just like CO, we get frequency ladders for all of these. It is important to note that as the
mass goes up, the moment of inertia increases and the energies decrease. Most of these
rotational transitions are in the radio regime, but the more massive molecules are found at
lower frequencies. One example is the J = 1 → 0 transition of CS, which is found at 43 GHz,
compared to the same transition for CO at 115 GHz.

Each molecule will have its own critical density. Radiative trapping is most important for
CO, but is also important for many other molecules.

3.2.6 A few more notes on ncrit

Shirley (2015) did a nice analysis of the critical density. He did the full multi-level solutions,
which is a big improvement over the typical treatments.

I found a few important nuggets from this text (quoted here):
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Figure 3.3: The excitation temperature for NH3 as a function of density of particles with
which it collides (nc). Vertical lines show the critical density. From Shirley (2015).

• As the frequency of the transition increases, the critical density moves farther up the
Tex curve.

• At optical wavelengths (the high frequency limit), critical density is interpreted as the
density at which an atomic forbidden line is quenched by collisions meaning that a
collisional de-excitation occurs before a photon can be generated from spontaneous
emission. In the optical, quenching occurs when Tex is thermalized (Tex → TK).
At radio wavelengths (the low frequency limit) the critical density occurs at differ-
ent positions along the sigmoid Tex curve for different molecular tracers and different
transitions. ... neither the radio interpretation of critical density being the density at
which an emission line is excited nor the optical interpretation of critical density being
the density at which an emission line is quenched is appropriate.

• ncrit provides only a rough estimate of the densities traced and should not be over-
interpreted. More sophisticated tools such as the Contribution Function (Tafalla et
al. 2006) may be used to determine the various contributions to the observed line
profile along the line-of-sight (see Pavlyuchenkov et al. [2008] for a detailed analysis
of these techniques). Ultimately, if one wants to understand their observed spectra,
radiative transfer modeling with publicly available codes are a fast and efficient way
to determine the physical properties of a region.
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3.3 Using CO to Derive Physical Parameters

Below, I show how we can use CO line observations to derive physical properties of molecular
clouds. The same principles apply to many molecular lines.

3.3.1 Tex and Tk

Since we have shown that 12CO is usually optically thick (Equation 3.32), the excitation
temperature is easily derived. We know very approximately that for optically thick lines
∆TB ≃ Tex ≃ Tk. For CO, however, the Rayleigh-Jeans approximation is not entirely valid
(ν ≃ 100 GHz for J = 1− 0), and we should do the complete solution.

At 100 GHz, the R-J limit doesn’t quite apply. We therefore have expressions that are
considerably uglier. Let’s revisit our definition of the brightness temperature:

TB ≡ c2

2kν2
Fν , (3.40)

where Fν is the flux density (usually in Jy beam−1. Therefore, With this definition, the
solution to radiative transfer in the case of a grey-body background leads to

Iν = Bν(TBG)e
−τν +Bν(Tex)

(
1− e−τν

)
(3.41)

or, using brightness temperature,

TB =
hν

k

[
1

ehν/kTBG
e−τν +

1

ehν/k Tex

(
1− e−τν

)]
(3.42)

If we take an off-source direction,

T off
B =

hν

k

1

ehν/kTBG
(3.43)

[Rohlfs & Wilson] So therefore:

∆TB = (1− e−τν )
hν

k

[
1

ehν/k Tex − 1
− 1

ehν/kTBG − 1

]
(3.44)

when the background radiation is assumed to be from the CMB TBG = 2.7K, hν/k =
hBJ(J+1) = 5.5K for the optically thick J = 1 → 0 line, and if we assume LTE (Tex = TK):

Tex =
5.5

ln (1 + 5.5/(∆TB(12CO) + 0.82))
. (3.45)

If ∆TB = 10 K, Tex = 13.4 K.
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3.3.2 An Alternate way of Deriving Tex [Kwok 9.2]

The easiest way to derive Tex is to assume that 12CO is optically thick, and to use Equa-
tion 3.45. This may be ok in some cases, but the assumption of optically thick CO does
break down at high J , and furthermore may not be a great assumption for more diffuse
clouds. We can, however, use line ratios of various transitions for a single isotopologue to
derive the excitation temperature.

We have
n(CO, J)

n(CO)
=

(2J + 1)e−EJ/kTex

Z(Tex)
. (3.46)

If we assume that all lines are optically thin, n(CO, J) ∝ N(CO, J), then

NJ

NT

=
(2J + 1)e−EJ/kTex

Z(Tex)
. (3.47)

lnNJ − lnNT = ln (2J + 1)− EJ

kTex
− ln(Z(Tex)) . (3.48)

lnNJ − ln (2J + 1) = lnNT − ln(Z(Tex))−
EJ

kTex
. (3.49)

ln

(
NJ

2J + 1

)
= ln

(
NT

Z(Tex)

)
− EJ

kTex
. (3.50)

(3.51)

Therefore, we have a linear equation! If we plot ln
(

NJ

2J+1

)
versus EJ/k, the slope of the line

will be −1/Tex and the y-intercept will be ln
(

NT

Z(Tex)

)
. If the assumption of constant Tex is

invalid, no straight line will fit the data. [ show Manoj+ paper on Orion ]

3.3.3 τ,N , and M

If we have observations of optically thin isotopologues, we can use their line ratios to derive
the optical depth of the optically thin lines, and therefore the column density and cloud
masses.

We are of course interested in the total column density of CO molecules. Use Boltzmann
equation to get:

NT = NJ

∑
J(2J + 1)e−hBJ(J+1)/kTex

(2J + 1)e−hBJ(J+1)/kTex
. (3.52)

So if we can derive NJ , we will get our answer (assuming Tex is known or can be assumed).

We know there is a relationship between the optical depth and nJ :

τν =

∫
S

nJ
gJ
gJ−1

c2Aul

8πν2
(1− e−hBJ(J+1)/k Tex)ϕνds , (3.53)
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which integrated along the line of sight gives us

τν = NJ
gJ
gJ−1

c2Aul

8πν2
(1− e−hBJ(J+1)/k Tex)ϕν , (3.54)

where Nu =
∫
nuds is the column density of molecules in the upper state and ϕ(ν) is the

normalized line profile, usually taken to be a Gaussian. Or integrated over the line,

NJ =
gJ−1

gJ

8πν2

c2Aul

1

1− e−hBJ(J+1)/k Tex

∫
τνdν (3.55)

so finally

NT =
8πν2

Aulc2
ΣJ(2J + 1)e−hBJ(J+1)/kTex

(2J + 1)e−hBJ(J+1)/kTex

∫ ∞

−∞
τνdν (3.56)

We observe ∆TB from Equation 3.44. Solving for τν , we find

τν = − ln

[
1− ∆TB

T0

(
1

eT0/ Tex − 1
− 1

eT0/TBG − 1

)−1
]
, (3.57)

where T0 = hν/k. For 13CO J = 1 → 0, if we assume TBG = 2.7 K, this is

τ 13CO
0 = − ln

{
1− ∆TB

5.3

[(
e5.3/Tex − 1

)−1 − 0.16
]−1

}
. (3.58)

Putting it all together,

NT =
8kπν2

Aulhc3
ΣJ(2J + 1)e−hBJ(J+1)/kTex

(2J + 1)e−hBJ(J+1)/kTex

∫ ∞

−∞
− ln

[
1− ∆TB

T0

(
1

eT0/ Tex − 1
− 1

eT0/TBG − 1

)−1
]
dν

(3.59)

At this point we have everything we need, but should probably simplify Equation 3.59. It is
important to point out though that Equation 3.59 is a perfectly acceptable solution, with one
measured quantity (∆TB), one derived (Tex), and one assumed (TBG). To make it simpler,

Assumption #1: Z(Tex) ≃ [1 + (k Tex/hB)2]1/2, or even that Z(Tex) ≃ (k Tex/hB). This
makes the left hand side of Equation 3.59 reduce to something reasonable. For 13CO again,
using the latter expression,

NT,13CO = 3× 1014
Tex

∫∞
−∞ τ13COdν

1− e−5.3/ Tex
. (3.60)

Assumption #2: Working with τν is not ideal, since our expression for it is so ugly. If we
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have an optically thin tracer, Tτν ≃ ∆TB, but only approximately so. A better relationship
is:

T

∫ ∞

−∞
τνdν ≃ τν

1− e−τν

∫ ∞

−∞
∆TBdν . (3.61)

Rohlfs & Wilson state that this is accurate to within 15% for τ0 < 2 and always overestimates
NT for τ0 > 1. So using Assumption #1:

NT,13CO = 3× 1014
τν

1−e−τν

∫∞
−∞∆TBdν

1− e−5.3/ Tex
. (3.62)

Assumption #3: If τν is very low, τν
1−e−τν ≃ 1 so

NT,13CO = 3× 1014
∫∞
−∞∆TBdν

1− e−5.3/ Tex
. (3.63)

If we can assume Tex = 10K and Gaussian line profiles,

NT,13CO = 8.75× 1014TB∆v. (3.64)

Sometimes 13CO is optically thick, and we need to substitute in C18O, or use the J = 2 → 1
transition.

This is known as the LTE treatment where all isotopologues have the same value of Tex and
the Boltzmann equation applies. LTE is commonly assumed, and is generally required to
make the problem tractable. It is an assumption though!

The problem is that we don’t really care about CO because it exists in relatively low quan-
tities; we want to know about H2. To convert between these two, we have the XCO factor.
XCO is known to be around 2 × 1020, but varies by environment and by metallicity (see
excellent review by Bolatto, also Draine 19.6). Because of uncertainties in XCO, the values
derived from the use of CO to trace the total molecular column is also uncertain.

[Cloud Masses (Simon et al. 2001)] How can we use the above equation? What we are
generally interested in is cloud masses. Assuming we have observations of some optically
thin tracer, we have column densities, and therefore can easily integrate over the cloud to
get a mass. We have to assume a 12CO to 13CO ratio, and an XCO value, in addition to
assuming LTE. We are finally left with

MLTE = 0.96M⊙

[
NT,13CO

8.75× 1014cm−2

](
θx
60′′

)(
θy
60′′

)(
D

kpc

)2

(3.65)

this from Simon et al. (2001), where cloud dimensions are θ and cloud distance D.

It can be much more complicated! Check out Mangum & Shirley (2017).
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3.3.4 Results of CO observations

[Observations of molecular clouds (Draine Ch. 32)]
Molecular gas is ∼ 22% of all mass in the Milky Way, M(H2) ≃ 8.4 × 108 M⊙. Molecular
clouds form stars. We separate clouds into categories based on their optical appearance
in terms of optical depth (Draine Table 32.1). These are “diffuse molecular clouds” with
AV ≲ 1, “translucent clouds” with AV ≃ 1 − 5, “dark clouds” with AV ≃ 5 − 20 and
“infrared dark clouds” with AV ≃ 20− > 100. Remember your definitions for AV !

Extinction is wavelength dependent such that longer wavelengths pass more readily through
material. Therefore, at short wavelengths, all clouds are observed in absorption. As we go
toward longer wavelengths, we see clouds in emission.

We may also classify clouds based on their sizes and masses (Draine Table 32.2). These
range from “GMC complexes” (GMC=giant molecular cloud) to cores. Cores have the
smallest sizes, the highest densities, the smallest line widths (and therefore the smallest
temperatures), the smallest masses, and the highest AV .

A GMC complex is a gravitationally bound complex of GMCs. Orion is the nearest. GMCs
themselves have lots of structure. Clumps can actually be isolated - we need not have all
this structure.

The number of GMCs in the Galaxy can be estimated with

dNGMC

dlnMGMC

= Nu

(
MGMC

Mu

)−α

(3.66)

for 103 M⊙ ≲ MGMC < Mu, with Mu ≃ 6 ∼ 106 M⊙, Nu ≃ 63, and α ≃ 0.6 (Williams
& McKee, 1997). Notice the similarity to the IMF! Nature loves power laws. For this
distribution, most of the mass is in the most massive GMCs, > 80% of the total mass in
GMCs with masses > 105 M⊙.

3.3.5 Summary of CO Use

Q: How can we derive Tex?
A: 1) Observe an optically thick tracer. In this case, ∆TB ≃ Tex ≃ Tk
A: 2) Observe multiple transitions of the same tracer, and fit the rotational energy diagram
(Equation 3.51).

Q: How can we derive the column density (and mass)?
A: We need an optically thin tracer! Then, we need to determine the excitation temperature.
Then, the line integrated intensity (in K km s−1) is proportional to the column density with
some assumptions. We get the mass from the cloud shape.
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3.4 Symmetric Tops, or Symmetric Rotors, NH3 (Draine

5.2.1)

The next-most-complicated molecules are called “symmetric tops” or “symmetric rotors.”

In general, molecular energies are given by:

Er = AhJ(J + 1) +BhJ(J + 1) + ChJ(J + 1) , (3.67)

where the rotational constants A,B, and C are defined as before, e.g., B = h
8π2IB

. The change
here from our treatment of CO is that now IB is the projection of the angular momentum
onto the B axis.

Ammonia is a symmetric top molecule, which means that it is symmetric under rotation
(IB = IC). The energy of symmetric top transitions is

E = hBJ(J + 1) + h(A−B)K2 , (3.68)

where K is the projection of J along the symmetry axis (K is integer from 0 to J), and A
and B are rotational constants.

Ammonia also has inversion transitions. These are different from rotational transitions.
When J = K, the levels are metastable (most molecules found with J = K) and the
molecule is spinning around its symmetry axis. These are known as the “rotational back-
bone.” Classically, there is no electric dipole radiation possible.

Inversion transitions arise from the two distinct eigenstates for the NH3 wavefunction. This
can be thought of as the N atom tunneling through the triangle formed by the three H atoms.
Inversion transitions take the compact notation (J,K), e.g., (1,1), although the transition is
between two different energy states, each with the same (J,K). Transitions are near 23GHz.

The inversion transitions are further split by interactions with the electric quadrupole mo-
ment of the nitrogen nucleus and the magnetic dipole of the protons. The (1,1) line for
example is split into four separate hyperfine lines.

This splitting into hyperfine states is confusing, but it occurs all the time. Even familiar
spectral lines are frequenctly composed of multiple distinct hyperfine transitions. Often,
these transitions are close to each other with respect to the line width, and so form a single
spectral line. For example, take a look at figures 6 and 7 in the Magnum paper.

Just like for CO, we can use NH3 to derive mass and optical depth. Line ratios of the various
inversion lines give you the optical depth. I invite you to look at the excellent review of NH3

by Ho & Townes.

[Kwok 7.9] Formaldehyde (H2CO) is a near-symmetric rotor. The 6 cm 111 → 110 transition
was one of the first transitions detected in the radio (in 1969). This line is (almost) always
seen in absorption. This suggests that formaldehyde is an “anti-maser,” where the upper
level is depopulated (really low Tex).
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3.5 Asymmetric tops, or Asymmetric Rotors, H2O (Draine

5.2.2)

Asymmetric tops are much more complicated.... H2O does have a rotational backbone, just
like NH3. Just like for NH3, the backbone states are highly populated. For most backbone
states, the only allowed transitions are to other backbone states. States are specified as
JK−1,K+1. H2O has two independent ladders, with total nuclear spin 0 (“para”) or 1 (“or-
tho”). There are no transitions between para and ortho. The selection rules for electric
dipole radiation are ∆J = 0,±1;∆K−1 = ±1,±3;∆K+1 = ±1,±3.

There are two ortho and two para transitions for which the backbone states can have tran-
sitions to non-background levels (ortho: 414 → 321 and 616 → 523; para 313 → 220 and
515 → 422). We can see these as masers. The upper level is over populated compared to the
lower. This is a population inversion.

Figure 3.4: Energy level diagrams for NH3 and H2O. The rotational backbone for NH3 are
those states with Ka = Kc. H2O masers can be found for transitions ortho: 414 → 321 and
616 → 523; para 313 → 220 and 515 → 422.

3.6 OH and “Λ Doubling”

Hydroxyl (OH) is a bit of an oddball. Because it is such a simple molecule, it is abundant
in the ISM. OH has 7 electrons, so the lowest electron orbital momentum is L = 1 and spin
Σ⃗ = 1/2 ∗ 2 + 1 = 2, with J⃗ = 1− 1/2, 1 + 1/2. This state is therefore

2Π1/2,3/2 . (3.69)

This gives rise to independent rotational ladders for each state (J = 1/2, J = 3/2) due to
spin-orbit coupling.

OH is super interesting because each of these rotational states are split by two different
mechanisms. First, each is split by “Λ-doubling,” an interaction between the nuclear rotation
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and the unpaired electron motion around its orbit. There is a slight splitting of the energy
levels because the rotational momentum of the molecule is very slightly transferred to the
orbital electrons, causing them, in effect, to become excited to a higher state. Given two
molecules, one with an electron cloud aligned with the rotation axis, and one that will not,
the molecule with the aligned cloud will have a smaller moment of inertia and therefore lower
energies.

Secondly, there are “hyperfine” splittings of each Λ-doubling split level. OH has non-zero
nuclear spin, and therefore has a nuclear magnetic moment. The magnetic field from the
nuclear magnetic moment couples to the electron motions and therefore the electronic energy
depends on the orientation of the nuclear moment and the electron angular momentum. The
hyperfine lines are from quantum number F = J + S.

For OH, S = 1/2, and for J = 3/2 we have F = 1, 2. Thus, there are four energy levels
associated with the 2Π1/2,3/2 state: two from Λ-doubling which are then split by the hyper-
fine interaction. Transitions between these four states are at 1720.5, 1667.4, 1665.4, and
1612.2 MHz.

OH is now studied extensively, because researchers think that it is key to understanding
so-called “dark gas.” We know that CO is missing some molecular material, because it has a
relatively high critical density. For OH, the critical density is much lower, so it is an excellent
probe of the diffuse ISM.

Figure 3.5: OH energy level diagram showing Λ-doubling and hyperfine splitting.
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Figure 3.6: The Morse potential (from Wikipedia).

3.7 Vibration

At the beginning of our discussion on molecules, we learned that molecules have three im-
portant types of energies that give rise to radiation: electronic, vibrational, and rotational.
We derived characteristic energies for these transitions and found that electronic transitions
are in the optical/UV regime, vibrational in the IR, and rotational in the radio.

We can think of vibrational, or stretching, energies as being due to two atoms attached with
a spring. What does the potential look like in this case? It is basically just the classical
solution: that of a simple harmonic oscillator (SHO), with energies E ∝ r2, where r is again
the difference in distance between the atoms. The actual potential is can be modeled as the
so-called “Morse Potential”:

E(R) = E0

[
1− e−(r−r0)/L

]2
, (3.70)

where L is the angular momentum. Notice that this is a central potential that only depends
on the distance between the two atoms r. This potential is at a minimum when r = r0, the
equilibrium distance. We can expand the Morse potential to get:

E(r) = E0(r0) + 1/2µω2
0(r − r0)

2 + ... , (3.71)

where ω0 = (k/µ)1/2 for the SHO, where k is the spring constant (2nd term = 1/2k(r−r0)2).
The spring constant k is closely related to the strength of the chemical bond. These terms
are actually rather simple! We have a constant plus a SHO potential. The physical meaning
of these terms are just:

E(r) = Ebind + Evibrational , (3.72)
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the binding and vibrational energies of the molecule.

We are interested here in the vibrational energies. For the SHO, the solutions are Hermite
polynomials: [from Kwok section 7.5]

Ev = (v + 1/2)hν0 , (3.73)

where v is the vibrational quantum number and

ν0 =
1

2π

√
k

µ
(3.74)

is the natural oscillator frequency, k is the spring constant. We immediately arrive at our first
result: the vibrational frequency decreases with increasing atomic mass. Heavier molecules
will have lower vibrational frequencies. The approximations above break down for large
values of v. In this case, the Morse potential stops looking parabolic. At high v, the energies
get closer together than the SHO (smaller than energies given above), because the potential
is flatter. Molecular hydrogen has 14 vibrational states before the continuum.

The selection rule for vibrational transitions within the harmonic approximation is ∆v = ±1.
The ground state transition v = 1 ↔ 0 is the “fundamental transition.” Transitions from
higher excited states to the ground state (v = n ↔ 0, n = 2, 3, 4, ...) are referred to as
overtones. Transitions between excited states are called hot bands.

3.8 All together now!

We have now independently derived rotational and vibrational energies. These two couple
to give the total energy for molecules:

Ev,J =

(
v +

1

2

)
hν0 − xν0 + hBJ(J + 1)− hD[J(J + 1)]2 + hH[J(J + 1)]3 + ... , (3.75)

First term: Vibrational energy of SHO
Second term: Anharmonic term of deviation from pure SHO
Third term: Rotational energy
Fourth term: Centrifugal distortion term to account for the fact that as the rotation rate
increases, the atoms get further apart, increasing the moment of inertia.
Fifth term: Rotational-vibrational coupling. Vibrations change the moment of inertia.
Large vibrations increase the moment of inertia, and therefore decrease the energy.

There are constants associated with each of these, and these “constants” depend on the
vibrational quantum number v.

3.8.1 Actual Emission

Rotational transitions within each vibrational transition are organized into branches accord-
ing to the change in the rotational quantum number. The selection rule for one-photon
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electric-dipole transitions is ∆J = −1,+1. The ∆J = −1 branch is known as the P-branch
and the ∆J = +1 branch is known as the R-branch. For the fundamental mode therefore

ν = ν0 + 2(J + 1)B; J = 0, 1, 2, ... (R− branch) (3.76)

and

ν = ν0 − 2JB; J = 1, 2, 3, ... (P− branch) . (3.77)

For electric quadrupole, the branches are O (∆J = −2) or S (∆J = +2). The Q-branch is
∆J = 0, but this is not allowed when J = 0. The nomenclature of vibrational transitions is:
“v branch (Jℓ)”. Therefore, the 1-0 S(1) transition of H2 refers to the transition (v = 1, J =
3) → (v = 0, J = 1).

Draine Table 5.2
Designation (Ju − Jℓ) Note

O(Jℓ) −2 Electric quadrupole
P (Jℓ) −1 Electric dipole
Q(Jℓ) 0 Electric dipole or electric quadrupole
R(Jℓ) +1 Electric dipole
S(Jℓ) +2 Electric quadrupole

It is a bit confusing how all this fits together. The energy level diagram in Figure 7.5 of Kwok
or Figure 5.2 of Draine helps a lot. We can have transitions between rotational levels only,
between vibrational levels only, or between both at the same time. Differences in vibrational
quantum number v have the largest energies.

3.9 H2 (finally!)

It is often said that H2 cannot be directly observed. This is not true, it’s just difficult to
observe. Remember that driving cat on Saturday Night Live that would always get into
accidents. It turns out he could drive, just not very well. H2 is exactly like that in every
way possible.

[from Pogge] There is no electric dipole for H2 so we can’t get electric dipole radiation.
We can get electric quadrupole though. This means that only the ∆J = 0 and ∆J = 2
quadrupole transitions occur, while the ∆J = 1 (dipole) rotational transitions are strictly
forbidden. Unlike CO, H2 emits no long-wavelength pure rotational lines. The P and R
branches of H2 do not occur, but transitions in the O, Q, and S branches can occur and are
observed in the near- and mid-infrared.

The small mass and small size of the H2 molecule gives it a low moment of inertia. The first
vibrational-rotational transition in the H2 ground state is the v=0-0S(0) transition, which
is the J=2 → 0 transition at 28.2µm, a part of the spectrum unobservable from the ground
due to water-vapor absorption in the atmosphere. Further, hν/k = 514K for this transition,
very large relative to typical temperatures in giant molecular clouds (10-20K). [This is the
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energy above ground state] All other vibrational-rotational transitions in the ground state
have increasing energy (and shorter wavelength). The next pure rotational transition is
J = 4 → 2 at 12µm, which has hν/k ≃ 1200K. The generally high energies of the first
excited states of H2 means that we expect negligible H2 emission unless we are looking at
unusually warm (500-1000K) H2 gas in proximity to hot stars or in regions of active star
formation within or at the fringes of giant molecular clouds. [H2 dissociates at ∼ 50000K]
For a population in equilibrium at a temperature of 10K, the fraction of molecules in the
J = 2 state is ∼ e−10/500 ∼ 10−22 In effect, in a molecular cloud there are simply no H2

molecules in states capable of emitting.

Pure rotational lines (vu = vℓ) span the 3.4 to 28µm region, while ∆v = ±1 vibrational-
rotational transitions have typical energies of ∼ 0.5eV and are found in the 1.4µm region
clustering around 2µm. Typical transition probabilities are ∼ 10−7 to 10−8 s−1, so these
lines are strongly forbidden.

Contrast this situation with the CO J = 1 → 0 line at 2.6mm where hν/k = 5.53K and the
molecule, which is easily excited by H2 or H I collisions at temperatures of T = 10 − 20K
more typical of the cores of giant molecular clouds. In general, H2 is only directly observable
as:
1. Absorption at Far-UV wavelengths in the diffuse ISM along sight lines toward nearby
stars in the Lyman and Werner band electronic transitions. These lines arise in both cold
and warm H2. This is our only direct probe of the cold H2 gas that makes up most of the
ISM.
2. Emission by Infrared rotational-vibrational transitions in the electronic ground state of
H2 at wavelengths between 1 and 28µm in relatively warm regions. The molecular gas must
be warm (500-2000K), excited either by shocks, outflows, or UV fluorescence from nearby
stars.

[Draine 5.1.6] One final note about H2: there are ortho and para branches as we saw for H2O.
Again, this arises from the fact that the combined proton spins can be either anti-aligned
(0, ortho) or aligned (1, para). Transitions cannot change the ortho/para branch. Like H2O
therefore the two branches operate like different species.

[Kwok] One super final note: HD is not homonuclear, and does have long wavelength rota-
tional lines in the far infrared. These lines can be important.
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Chapter 4

Ionized Gas (and Some Atomic)

First, a review:
In the introduction to this course, we talked about different phases of the ISM. Together,
ionized gas makes up about 23% of the mass of the ISM in our Galaxy. This total is broken
down into Coronal gas that has T ≳ 105.5K, n ≃ 0.004 cm−3 (the “hot ionized medium”)
and gas with T ≳ 104K, n ≃ 0.3−−104 cm−3 (discrete H II regions and the “Warm Ionized
Medium”). Of these, the WIM contains the most mass.

Obviously our diagnostics of the ionized gas will be temperature sensitive: certain transitions
will be detected in the coronal gas, and a different set of transitions will be detected in the
WIM. Keep this in mind as we review quantum mechanics and selection rules.

4.1 Quantum Mechanics Review [Draine chapter 4]

We have to get our notation down. For electronic transitions, for atomic or ionized gas, the
goal of the notation is to specify the energy levels completely. Our discussion here pertains to
ionization, because we are almost interested in the energy levels of ionized atoms. Everything
is also applicable to neutral atoms as well.

Transitions between energy states within an atom (or ion) are known as “bound-bound”
transitions. When a free electron recombines with an ion, this is “free-bound,” and when
free particles radiate it is called “free-free.”

4.1.1 Spectroscopic Notation

Ionized Gas

Each electron that gets ejected gets expressed with an additional roman numeral. H I is
neutral hydrogen, H II is ionized hydrogen, OIII is doubly ionized oxygen, etc.

89
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Notation for atoms

We can approximate electrons in atoms as having “single electron” orbitals. These orbitals
are characterized by the quantum numbers:

n: the principle quantum number. Classically, this is the size of the orbital. Takes in-
teger values of 1,2,3,...

ℓ: the orbital angular momentum in units of ℏ. This is the shape of the orbital. Takes
values ℓ = 0, 1, 2, ..., n− 1, for n values. The values of ℓ are given additional nomenclature:
ℓ = 0, 1, 2, 3 are referred to as s, p, d, f (“sharp,” “principle,” “diffuse,” and “fundamental”
were used originally for hydrogen to describe the spectra. Examples are ns→ np, np→ ns,
nd→ np, nf → nd).

mℓ: the projection of the angular momentum/ℏ onto the z axis. We see in the figure
that there is only one way to orient a sphere (ℓ = 0), but multiple ways for the other orbital
shapes. mℓ (sometimes called mz, as in Draine) takes values −ℓ... − 1, 0, 1, ℓ, for a total of
2ℓ + 1 values. If there is no external magnetic field, while the quantum numbers are still
present, the energies are degenerate.

s: the spin quantum number. Has value of 1/2 for electrons.

ms: The projection of the electron spin angular momentum onto the z axis. Takes val-
ues of −1/2,+1/2. Again, if there is no applied field, the two states are degenerate.

j = |ℓ ± s|: the total angular momentum. Both ℓ and s are angular momentum. The
use of j is called spin-orbit (or L − S) coupling. This gives rise to “fine structure” lines
discussed below.

mj: projection of the total angular momentum along a specified axis. mj = mℓ + ms

and |mℓ +ms| ≤ j.

In the simplest case of a single electron, there are 2(2ℓ+1) distinct electronic wave functions
for each nℓ pair (called a “sub-shell”). The 2ℓ + 1 term is from the mℓ quantum number,
and the factor of 2 is from the spin.

Pauli Exclusion Principle

For multiple electron atoms, we cannot have the same wave-function (set of quantum num-
bers) for any two electrons. This gives us the limit for any sub-shell of 2(2ℓ + 1), 2 for s, 6
for p, 10 for d.

The sub-shells increase in energy as: nℓ = 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6.... We see that
energies increase with increasing n and ℓ, but since the energies associated with n and ℓ are
roughly comparable, the ordering of sub-shell energies is more complicated. This gives rise
to two electrons in the first n shell, 8 in the second, 18 in the third, and 32 in the fourth.
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This can easily be seen in the periodic table.

We denote the shell occupancy with nℓ#elec, so for Na with 11 electrons, the ground state
configuration is 1s22s22p63s (the “1” on the 3s term is implied). Often, we would just shorten
this to call it a “3s” atom.

Multiple Electrons

When multiple electrons are involved, single electron QNs are not as useful. We need a
method for specifying all the electrons, with MOAR QUANTUM NUMBERS!!
L: the total angular momentum of all the electrons.
S: the total spin angular momentum of all the electrons.
J = |L+ S|: the total angular momentum. Like its little brother j, J ranges from L− S to
L+ S. It need not be an integer, since S can be 1/2.
Using the J QN for L and S is called the “L-S coupling” approximation.

L-S coupling is just the coupling between the L and S vectors to produce the new quantum
number J. Valid when external magnetic field weak, atomic number ≲ 40. This is an
approximation of sorts, albeit a very good one.

All Together

We now have all that we need to fully specify the energy of an atom. The full spectroscopic
notation is:

2S+1Lp
J , (4.1)

where L = S, P,D, F for L = 0, 1, 2, 3, and p is the “parity”. L takes all possible values
of

∑
ℓ, and so there are multiple different possible spectroscopic notations for atoms with

multiple electrons in an unfilled subshell. Parity can be “even” or “odd”. The parity must
change in electric dipole transitions (see below), and so is an important quantity to note. If
the quantity Σiℓi is even, the parity is even, and the same if it is odd.

This notation gives us all the information we need (usually). It does not include the splitting
of degeneracy in magnetic fields, or the hyperfine-structure splitting that gives rise to the H
21 cm line.
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Each LS combination is called a “term”: 2S+1L. There may be multiple values of J for
each term. If so, these are called “levels.” The levels tells you how L and S are coupled.
The “multiplicity” of a term with total spin S and total orbital angular momentum L is
g = (2S + 1)(2L+ 1). 2S + 1 is the “spin multiplicity.”

Filled orbits have no net spin or orbital angular momentum, so we express the state of atoms
only using their valence electrons.

Let’s do an example. The 3P term has L = 1 and S = 1. Adding L and S vectorially, we get
J = 0, 1, 2. The 3P term therefore has three possible energy configurations: 3P0,

3P1, and
3P2. This is called “fine-structure” splitting. Before, we had “hyperfine” structure for H I.
Terms like 3P with three fine-structure values are called “triplets,” those with one “singlets,”
etc. Those with multiple terms are collectively called “multiplets.”

Let’s take a look at Draine Figure 4.1.

Figure 4.1: Draine Figure 4.1 showing energy levels of OIII and NII.

Both NII and OIII have six electrons, arranged as 1s22s22p2. We are concerned only with
the 2p2 electrons in the un-filled subshell.
This gives rise to three terms: 1D, 3P, and 1S (derivation of these three terms is slightly
involved; see footnote 1 of Draine Chapter 4. Basically, you determine all the terms, then
you have to apply the Pauli Exclusion Principle).
The 1D and 1S terms must be singlets, since S = 0, so we have 1D2 and

1S0. The
3P term is

a triplet as we saw earlier, so we have 3P0,
3P1, and

3P2.
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The energy level diagram shows how the energies are arranged. [Kwok pg 83] Hund’s em-
pirical rules for atomic energies says that:
Higher S = lower energy
Higher L = lower energy
Higher J = higher energy if the shell is less than half-filled, lower energy if more than half
filled
If exactly half-filled, lowest energy term is always S (L = 0), but other terms do not obey
above rules. We get higher energies with: higher J , and usually higher energies with the
lowest possible values of L and S, so 1S0 is higher energy than 1D2.

4.2 Emission and Absorption [Draine 6.7]

Transitions between these states give rise to emission or absorption lines (of course). The
strongest lines are those that are “allowed,” and satisfy the selection rules. These are called
electric dipole transitions, nomenclature that we have used previously.

4.2.1 Selection Rules

Electric Dipole Radiation has the following selection rules. Some of these are ruled out by
others, so you should think of each one as being independent.
(1) Parity must change.
(2) ∆L = 0,±1, but ∆L = 0 → 0 forbidden. (∆L = 0 ruled out by rule # 1).
(3) ∆J = 0,±1, but J = 0 → 0 forbidden.
(4) Only one single electron wavefunction changes, with ∆ℓ = ±1. This one took me a while
initially to wrap my head around. There are many ways that you could have ∆ℓ = 0,±1 if
you allow for multiple electrons to transition. The electron carries away angular momentum,
and this angular momentum must come from the atom; thus the rule.
(5) ∆S = 0 (Spin does not change). This is another way of saying that the transitions must
be between states with the same multiplicity.

Electric dipole transitions are of course the strongest. They have the largest Einstein A
coefficients, which leads to the smallest lifetimes in their excited states. They are denoted
as, e.g., NII+wavelength.

In the ISM, the density is low. Really low. All atoms have excited states for which there
is no dipole radiation possible. In laboratory densities, these states are collisionally de-
excited. In the ISM, this is not the case, and we can get magnetic dipole and electric
quadrupole radiation out (magnetic quadrupole, and electric and magnetic octopole radiation
are possible but not observed in the ISM to my knowledge).

Transitions that satisfy electric dipole selection rules 1 to 4, but fail rule #5 are called
“semi-forbidden,” “intercombination,” or “intersystem” transitions. These are denoted, e.g.,
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NII]+wavelength. Transitions are ∼ 106 times weaker than electric dipole radiation.

Transitions that fail at least one of the other four selection rules are called “forbidden.”
While these transitions are not strictly forbidden, we never see them in the lab (only in the
low density ISM). Electric quadrupole and magnetic dipole transitions are both forbidden.
We denote forbidden transitions with, e.g. [NII]+wavelength. They are ∼ 102 − 106 times
weaker than permitted transitions.

4.2.2 Hydrogen [Draine 9.7]

It is worth spending a little time on ionized hydrogen, the most abundant ionized specites.
Hydrogen of course has a single electron, so its state is 1s. From this state it can transition
to the 2p, 3p, 4p... states. Transitions into or out of the n = 1 level are called Lyman, n = 2
Balmer, n = 3 Brackett, n = 4 Paschen, n = 5, Pfund, and n = 6 Humpfreys (page 483).

Because of how the hydrogen energy levels are arranged, the Lyman series starts in the UV,
the Balmer series in the visible, and the others in the IR.

Transitions between adjacent levels are called α-transitions, ∆n = 2 are β, etc. Lyman α is
the transition from n = 2 → 1. Balmer α, i.e. Hα is n = 3 → 2.

The 2p state is actually a doublet. s = 1/2 and ℓ = 1, so g = (2s+1)(2ℓ+1) = 2. This leads
to two Lyman α lines (here in absorption): 2S1/2 → 2P

o
1/2 and 2S1/2 → 2P

o
3/2. The energy

level difference between these transitions is minimal compared to the intrinsic line-width.
We can therefore treat these energies as being degenerate.

The “Lyman limit” is at 13.6 eV. Photons with energies greater than 13.6 eV (91.16 nm) are
quickly absorbed in the ISM by hydrogen. These photons basically do not exist in the diffuse
ISM.

4.2.3 Other Important Lines [Kwok 5.3]

Various fine-structure lines are important for our understanding of the ISM. Although for-
bidden, these lines have high Einstein A’s due to the ν3 dependence, and so emit readily.
[CI] 3P2 → 3P1 at 360µm and 3P1 → 3P0 at 609µm. Carbon is abundant and these transi-
tions are important in low-energy environments.
[OIII] 3P2 → 3P1 at 52µm and 3P1 → 3P0 at 88µm. Ditto, but for harder radiation fields.
[NII] 3P2 → 3P1 at 122µm and 3P1 → 3P0 at 205µm. Note that CI, OIII, and NII have the
same electronic configurations.
[CII] 2P3/2 → 2P1/2 at 158µm. Because of carbon’s lower ionization potential compared to
hydrogen, there are plenty of photons around to ionize C. The [CII] lines are really bright.

These lines are incredibly important for the energy balance of the ISM. The [CII] line is the
most efficient cooling line of the ISM in fact!

Total luminosities measured by COBE FIRAS.
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Figure 4.2: Draine Figure E.1 showing energy levels of H.

Species Transition λ (µm) logL(L⊙)
CO J = 2 → 1 1302 4.9
CO J = 3 → 2 867.2 5.1
CO J = 4 → 3 650.4 4.1
[CI] 3P1 →3 P0 609.1 5.3
CO J = 5 → 4 519.8 5.0
[CI] 3P2 →3 P1 370.4 5.5
[NII] 3P1 →3 P0 205.3 6.7
[CII] 2P3/2 →2 P1/2 157.7 7.7
[NII] 3P2 →3 P1 121.9 6.9

4.2.4 Line Strengths [Kwok 5.2]

Line strengths depend on the population in the state and the Einstein A coefficients. In the
case of lines within a multiplet, the Einstein As will be similar, and the line-strengths will
be determined by the population in the state:
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Figure 4.3: Draine Figure 12.1 showing hydrogen energy levels.

The sum of the strengths of all lines of a multiplet that end on a common final level is
proportional to the weight 2J + 1 of the level.
The sum of the strengths of all lines of a multiplet that start from a common initial level is
proportional to the weight 2J + 1 for the initial level.

The reason for these rules is simple: the degeneracy of the level is 2J + 1. Remember
previously that the degeneracy for H I is gu = 3 for the upper state, and gℓ = 1 for the lower
state. This implied that 3/4 of all H I is in the upper (spin aligned) state, and 1/4 in the
lower (spin anti-aligned) state. The degeneracy for H I is g = 2S + 1, for hyperfine levels, so
2J + 1 for fine-structure should be expected.

We see these degeneracy values in the energy level diagrams.

For example, transitions between levels of the 4P term and the 4D term. The 4D term
(S = 3/2, L = 2) can take values of J = 7/2, 5/2, 3/2, 1/2. The 4P term (S = 3/2, L = 1)
can take values J = 1/2, 3/2, 5/2.

The highest J states have the highest degeneracy, so there should be more transitions into
and out of these states. The degeneracy for the 7/2, 5/2, 3/2, 1/2 states are 16, 12, 8, 4. The
strongest line will be the J = 7/2 → 5/2 line, and the weakest will be J = 1/2 → 1/2.

4.3 Ionization Processes

Some gas is ionized, and some is not. How about that?
In dense molecular clouds, the material is essentially all neutral, with ne/nH ≲ 10−6. Ion-
izing radiation cannot penetrate. Ionizations due to cosmic rays (CRs).
In H I C is frequently ionized (low ionization potential, remember), and H I is somewhat
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ionized by CRs., 10−3 ≲ ne/nH ≲ 10−1, depending on density, temperature, CR ionization
rate.
In an H II region, hydrogen completely ionized. He has an ionization potential of ∼ 24 eV,
and so may be ionized. C, O, N ionized, and OIII and NIII may be present as well, depending
on hardness of radiation field.
In the HIM, carbon is in CIV or CV, and oxygen in OIV, OV, or maybe OVI.

The two main ionization processes are photoelectric absorption, and collisional ionization.
Cosmic ray ionization can also be important, as can charge exchange.

4.3.1 Collisional Ionization

The rate of collisional ionization in cm−3 s−1 is

kci =

∫ ∞

I

σci(E)vfEdE , (4.2)

This makes perfect sense, actually. We know that collision rate is C = nσv, so C/n = σv.
The rms velocity of a maxwellian distribution is ⟨v⟩ =

∫∞
0
vf(v) dv, but we are only interested

in the range above the ionization energy I. For Maxwellian distributions,

kci =

(
8kT

πme

)1/2 ∫ ∞

I

σci(E)
E

kT
e−E/kT dE

kT
. (4.3)

We can approximate the collisional cross section:

σci ≈ Cπa20

(
1− I

E

)
, (4.4)

where C is a constant of order unity. This expression reduces to zero when I = E. This
gives us our expression for the rate coefficient:

kci = 5.466× 10−9CT
1/2
4 E−I/kT cm−3 , s−1 . (4.5)

We see that as the temperature increases, the collisional ionization rate increases slowly. If
the ionization potential is higher, the rate drops off rapidly.

4.3.2 Photoionization

The photoionization rate in s−1 is

ζp.i. =

∫ ∞

ν1

σpe(ν)c
uν
hν

dν. (4.6)

Draine gives expressions for σpe. Notice that at high energies, the “metals” dominate the
photoionization cross sections. Even though the abundance of metals is low, their impact is
really large.
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Figure 4.4: Ionization potentials from Draine Appendix D



4.3. IONIZATION PROCESSES 99

Figure 4.5: Photoionization cross sections for H, H2, He, C, and O. Jumps for C and O
correspond to ionizations from the K-shell (1s).

4.3.3 Cosmic Ray Ionization

Cosmic rays are energetic electrons and ions. Their velocities are much greater than those
drawn from a thermal distribution, and thus they are “non-thermal.”The mean kinetic energy
of CRs is ≈ 35 eV according to Draine.

Without too much work, we can come up with an expression for the cosmic ray ionization
rate:

ζCR = 4π

∫ ∞

Emin

σci(E)
dF

dE

dE

E
, (4.7)

where σci is the cosmic ray ionization cross section, the flux per solid angle is F (E), and
Emin is the minimum energy required.

Draine gives an expression for σci. I don’t find the physics terribly enlightening. CR ioniza-
tion is important in high density environments, however, like dense dark clouds. Here, CR
ionization provides the only mean of generating ions.
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Draine lists in Chapter 16 that ζCR = 1× 1016 s−1.

4.4 Ionization in Predominantly Neutral Regions [Draine

Chapter 16]

The subject of CR ionization leads directly into our next topic, of ionization in neutral
regions. Draine lists three distinct regimes:
Diffuse H I regions, where metals are photo-ionized by starlight. Remember, the ionization
cross section for metals greatly exceeds that for H. The gas may be ≈ 102K (CNM) or warm,
≈ 5000K (WNM).
Diffuse molecular clouds (AV between ∼ 0.3 and 2). Most of the hydrogen is molecular, but
metals still photoionized by starlight. CRs produce H+

2 , which leads to the formation of H+
3 .

Dark molecular clouds (AV ≳ 3). There is insufficient photon flux to ionized C and S. CRs
maintain a small fractional ionization ne/nH ≈ 10−7.

4.4.1 Ionization of Metals in H I Regions

Carbon is a very interesting element because it is abundant (nC/nH ≈ 10−4 after taking into
account depletion in solid grains), and has an ionization potential less than H.

How much of the carbon is ionized?

If we have an ionization rate of carbon ζ(C0) due to primarily photoioinization by starlight
(with contributions from X-rays and CRs). The percentage ionized will be determined
between the balance between ionization and recombination. The recombination rate must
depend on the number of free electrons available, which from studies of pulsar DMs is
ne ≈ 0.04 cm−3. For a neutral fraction x(C0) = n(C0)/nC, and recombination rate in cm−3

s−1 of αrr,
αrr(C

+)ne[1− x(C0)] = ζ(C0)x(C0) (4.8)

which leads to

x(C0) =
αrr(C

+)ne

αrr(C+)ne + ζ(C0)
. (4.9)

We can estimate most of these values: ζ(C+) = 2.58× 10−10 s−1 (Draine Table 13.1), αrr =
8.63× 10−12 cm−3 s−1 for T = 100K (Draine Table 14.6). Thus x(C0) = 1.3× 10−3.

This is an amazing result! About 99.9% of gas-phase interstellar carbon is ionized.

We get similar results for other meals with ionization potentials less than 13.6 eV.

4.4.2 Ionization of H in H I Regions

In the CNM, starlight with photon energies between 13.6 and 54.4 eV cannot penetrate into
the cloud (Figure 13.1). These are the ionization potentials for H and He (2nd potential).
Higher energy photons can penetrate, however (Figure 13.1). The column density of the



4.4. IONIZATION IN PREDOMINANTLY NEUTRAL REGIONS [DRAINE CHAPTER 16]101

Figure 4.6: Draine 16.1

CNM is ∼ 1020, and a 150 eV photon has absorption cross section per H of 18./×10−20 cm−3

(due mostly to He). X-rays can have a big effect on the ionization of the CNM, if there is
an x-ray source. CR ionization is dominant where x-rays are not.

Draine works out the estimate for the ionized fraction xe = ne/nH, in Figure 16.1.

The result is that the ionization fraction of hydrogen in the CNM is low, between 10−3 and
10−4. The result is dependent on the CR ionization rate, which is pretty uncertain.

4.4.3 Warm H I Regions

Draine doesn’t elaborate, but in the WNM,through similar arguments, the ionization fraction
is a couple percent.
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Figure 4.7: Draine 16.2
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4.4.4 Diffuse Molecular Gas

In molecular environments, CRs and x-rays ionize H2 to create H+
2 . The abundance of H+

2

is rather low, but we can back out the cosmic ray ionization rate. If H+
2 encounters a free

electron, it will dissociatively recombine:

H+
2 + e− → H+H . (4.10)

Because the density of electrons is low, the following reaction is more likely:

H+
2 +H2 → H+

3 +H . (4.11)

Various reactions remove H+
3 from the gas. Draine lists 4, each with rate coefficients

k1, k2, k3, k4.

As long as we can estimate the rate coefficients that determine how quickly H+
3 is removed

from the gas, we can determine the ionization rate. This is pretty powerful! Assuming x-ray
ionization to be negligible, that means that we can more or less directly measure the cosmic
ray ionization rate. Draine says that of our four processes, #1 and 2 are dominant.

We therefore have
n(H+

3 )

n(H2)
≈ 2ζCR(1 + ϕs)

(k1 + k2)nHxe
(4.12)

(ϕs is the number of secondary ionizations for each primary) so

ζCR(1 + ϕs) ≃ (k1 + k2)nHxe
n(H+

3 )

2n(H2)
(4.13)

Direct measurements of H+
3 have lead to values of ζCR ≃ 2× 10−16 s−1.

4.4.5 Dense Molecular Clouds

If AV ≳ 3, UV radiation cannot penetrate the cloud. C and S will be predominantly neutral
in the gas phase. We do get ionization from CRs though, as usual.

Draine works out the ionization in dense molecular clouds. The fractional ionization is really
low, ∼ 10−7 for nH ≈ 104 cm−3.

4.5 Recombination of Ions with Electrons [Draine Chap-

ter 14]

In the last section we talked about ionization: radiative, collisional, and by cosmic rays. The
second half of the equation of course is recombination. How are ions and electrons able to
recombine?
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Radiative recombination: X+ + e− → X + hν.
Dielectric recombination: X+ + e− → X∗∗ → X + hν
Three-body recombination: X+ + e− + e− → X + e−

Charge exchange: X+ + Y → X + Y +

Dissociative recombination: AB+ + e− → A+B
Neutralization by grain: X+ + grain → X + grain+

Draine mentions that the relative importance of these depends on the ion in question and
the physical conditions of the plasma. We will only cover the most important recombination
reactions for most astrophysical plasmas, namely radiative and dielectric recombination.

4.5.1 Radiative Recombination

The most obvious recombination reaction is radiative recombination, where an ion and an
electron recombine to create a neutral atom, and a photon is released corresponding to the
difference in energy between the free and bound states (this is free-bound radiation, to be
covered next lecture).

The thermal rate coefficient for recombination into level nℓ, αnℓ in units of cm3 s−1, is exactly
the same as that from collisional ionization, aside from the integration limits and different
cross section subscripts:

αnℓ =

∫ ∞

0

σrr,nℓ(E)vfEdE , (4.14)

which for a Maxwellian distribution is

αnℓ =

(
8kT

πme

)1/2 ∫ ∞

0

σrr,nℓ(E)
E

kT
e−E/kT dE

kT
. (4.15)

The free-bound emission has an energy of hν = Inℓ +E, where Inℓ is the energy required for
ionization from level nℓ. For hydrogen, for example, Inℓ = IH/n

2, the binding energy of the
electron in level nℓ.

Sometimes authors speak of a recombination rate in cm−3 s−1:

NR = nionneα ≈ n2
eα (4.16)

4.5.2 Radiative Recombination for Hydrogen

Being the most abundant element by far, hydrogen’s recombination rates will have the largest
impact on the ISM. Draine’s Table 14.1 lists radiative recombination coefficients for hydro-
gen. Remember, the energies are almost degenerate, but the different ℓ states are real and
have different recombination rate coefficients.

Recombinations directly to level n = 1 result in photons of energy IH that can ionize hydro-
gen. This reaction therefore does not alter the plasma, since the emitted photon can go on
to ionize another atom. This process is efficient in dense environments, and recombinations
down to level n = 1 are quickly absorbed near the point of emission. Aside from transport
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of the ionization energy a short distance, this has virtually no effect on the ionization state
of the gas. In low density environments, this effect is less important.

We can therefore create two recombination coefficients for the two different environments
(Baker & Menzel 1938):
Case A: Optically thin to ionizing radiation; every photon emitted during recombination
escapes. Sum over all nℓ to get αA (Table 14.1).
Case B: Optically thick to radiation just above IH = 13.60 eV; radiation from recombina-
tions directly to n = 1 are quickly absorbed. Sum over all nℓ n ≥ 2 to get αB.

The Case A and Case B coefficients are just the summation over all recombination coeffi-
cients. So Case A is

∑∞
i=1 αi and Case B is

∑∞
i=2 αi, where i represents nℓ.

These two cases have application in two regimes found in the ISM. Case B recombination
is appropriate in H II regions, where the density of H is large enough (although still only
n ≳ 1 cm−3).

The HIM with T ≳ 106K is collisionally ionized and has little neutral hydrogen. Because of
the high temperature, the free-bound emission is hard. Case A is an excellent approximation
here. For the more diffuse gas of the WIM, either may be appropriate, depending on the
density.

We can approximate the Case A and B recombination rate coefficients for hydrogenic ele-
ments:

αA(T ) ≈ 4.13× 10−13Z(T4/Z
2)−0.7131−0.0115 ln(T4/Z2) (4.17)

and
αB(T ) ≈ 2.54× 10−13Z(T4/Z

2)−0.8163−0.0208 ln(T4/Z2) (4.18)

T4 here is the “electron temperature” of the plasma. In a thermal plasma, the electrons and
ions will have roughly the same energies, but due to the mass differences, different velocities
and temperatures.

These approximations are different from what I learned in grad school. Dyson & Williams
advocate for

αB = 2× 10−10T−3/4
e = 2× 10−13T

−3/4
4 . (4.19)

These are slightly different at T = 104K, as the Draine approximation gives 2.54 × 10−13

and the Dyson & Williams on gives 2× 10−13. My guess is the the Draine approximation is
more accurate.

4.5.3 Recombination Spectrum

Take a look at Draine Figure 14.2

We see that if radiative recombination takes place into level 4p, it will then release energy as
the electron cascades down toward the 1s state. The left pane shows Hβ transitions while
the right shows transitions out of the 4p level.



106 CHAPTER 4. IONIZED GAS (AND SOME ATOMIC)

Figure 4.8: Case A and Case B recombination rate coefficients [Draine Figure 14.1].

These are “bound-bound” transitions due to recombination, otherwise known as recombina-
tion lines. We will discuss these further in upcoming lectures. We do have to account for
some effects now, however.

In Case A recombination, it is optically thin and all radiation gets out. Easy.

In Case B recombination, it is optically thick to Lyman continuum radiation. This requires
that it is also optically thick to Lyman α, β, γ... since the resonant absorption cross sections
are much larger than the photoionization cross sections. For Case B, all the Lyman series is
optically thick.

[What happens to the emitted photons when the radiation is optically thick?] The pho-
tons are immediately re-absorbed by nearby atoms. This is known as the on-the-spot
assumption. We can think of emission and absorption as being from the same atom.

This means that the Lyman photons essentially are not emitted at all. Each transition to
create a Lyman photon is reversed until eventually a non-Lyman photon is emitted.

This leads to a problem, however. How are we supposed to get electrons out of either the 2p
or 2s states? The transition 2s→ 1s is strongly forbidden and only occurs with two-photon
decay. This produces continuous radiation.

Since the lifetime in the 2s state is long, collisional de-excitation is possible. The most
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probable collisional de-excitation is 2s→ 2p. In bright H II regions with high enough density,
the two-photon process is suppressed by collisions.

The transition 2p → 1s has a very short radiative lifetime of 1.59 ns. Collisions here are
unimportant. The issue again is that for Case B recombinations, the photons will be scattered
many times. Since individual ions in the WIM have velocities of ∼ 10 km s−1, the frequency
of each emitted photon with respect to nearby atoms is not exactly at the frequency of
Lymanα. The optical depth is of course lower off line center, and eventually this effect
allows radiation to escape.

4.5.4 Radiative Recombination for Heavy Elements

Heavy element recombination is much less important than that of H and He.

For metals, we do not have to worry about recombining photons ionizing additional atoms,
so we can use Case B recombination for all species.

For T ≲ 103K, most metals will be singly or doubly ionized, while H and He will be
predominantly neutral. Most metals have low ionization potentials (Appendix D).

For T ≳ 104K most metals will be doubly ionized.

In dielectric recombination, if an ion has at least one bound electron to begin with, the
combining electron can transfer energy to a bound electron, promoting the bound electron
to an excited state, and removing enough energy from the first electron that it too can be
captured in an excited state. The atom now has two excited electrons. This atom can
“autoionize” to get rid of the energy of both excited electrons, or the electrons can relax
radiatively.

Dielectric recombination is important for high temperature plasmas. This is because the
electron must have sufficient energy to produce a doubly ionized state. Some elements do
have appreciable dielectric recombination rates, even in the relatively low temperature H II

regions.

4.5.5 Ionization Balance in Collisionally Ionized Gas

We are finally now able to talk about ionization balance, when the ionization rate balances
the recombination rate. Our discussion here will focus on collisionally ionized gas, i.e. the
HIM. Next time we will discuss ionization balance in a radiatively ionized gas, i.e. and H II

region.

When do we get collisional ionization balance? When

ne ⟨σv⟩ci n(X
n+) = ne ⟨σv⟩rr n(X

(n+1)+) (4.20)

Note that this is only valid for hydrogen. For metals, we would have to include dielectric
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recombination too. We had the collisional ionization rate before:

kci =

(
8kT

πme

)1/2 ∫ ∞

I

σci(E)
E

kT
e−E/kT dE

kT
. (4.21)

We can approximate the collisional cross section:

σci ≈ Cπa20

(
1− I

E

)
, (4.22)

where C is a constant of order unity. This expression reduces to zero when I = E. Draine
gives a radiative recombination rate as:

σrr(E) =
gℓ
gn

(I + E)2

emec2
σpi(hν = I + E) , (4.23)

which is called the Milne relation.

The Milne relation is derived in Draine Chapter 3. It obviously relates the ionization cross
section to the radiative recombination cross section. The derivation is rather simple, and
requires LTE. In LTE, the rate at which photons are removed by photoabsorption must
be equal to that at which they are created by radiative recombination (withkin an energy
range). Then the detailed balance,

⟨σv⟩ℓ→u =
gu
gℓ
e(−Euℓ/kT ) ⟨σv⟩u→ℓ , (4.24)

the balance between upward and downward rate coefficients, gives us the Milne relation.

Let’s introduce a new concept of oscillator strength for photoionization:

fℓu =
mec

πe2

∫
σℓu(ν) dν , (4.25)

a constant multiplied by the cross section integrated over all frequencies. Oscillator strengths
are strange terms to use when we have much more fundamental terms possible, but they do
have one large advantage:

Σj fij = N , (4.26)

where N is the number of electrons and the sum is over all transitions out of initial state i.
The utility of the oscillator strengths is that we can easily relate the oscillator strength of a
known level to that of all transitions into or out of that level.

Now, if fpi is the oscillator strength for photoionization from the ground state, and assume
σpi ∝ (hν)−3 ( from before), then

σpi(hν = I) ≈ 2πe2

mec
fpi
h

I
, (4.27)

and it can be shown that
⟨σv⟩rr
⟨σv⟩ci

≈ 4πα3fpi
C

I

kT
eI/kT , (4.28)
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where α is the fine-structure constant.

Ionization balance occurs at a temperature T when the above ratio is 1:1

I

kT
eI/kT =

C

4πα3fpi
. (4.29)

If C ≈ 1 and fpi ≈ 1/2, I/kT ≈ 10.6. If dielectric recombination occurs, the temperature
increases.

4.6 Emission from a Plasma [Draine Chapter 10]

There are four main ways in which an astrophysical plasma emits:
(1) Free-free (Bremsstrahlung) continuum where a free electron is in-elastically scattered.
(2) Free-bound continuum due to recombinations.
(3) Bound-bound line emission
(4) Synchrotron (kinda, as we’ll see)

We have discussed bound-bound transitions in some detail, and discussed the physics of
free-bound (but not the radiation). Now we’ll turn our attention to the radiation from free-
free, free-bound, and synchrotron radiation. These three processes produce “continuum”
radiation since the energy states are not quantized.

4.6.1 Free-free emission (Bremsstrahlung)

Free-free emission is from electrons scattering off of ions. This scattering accelerates the
electrons (changes their direction + velocity), and accelerated charges radiate. Ions are also
accelerated, but much less due to their greater masses. We can ignore their contribution to
the emission.

The electrons are unbound before and after the interaction, which leads to a continuous
spectrum.

Free-free emission is the dominant continuum emission mechanism in thermal plasmas, and
is therefore the dominant method in which plasmas cool, especially for high temperature
(x-ray emitting) plasmas. The x-ray emission from clusters of galaxies is free-free. We won’t
get into this emission in this course on the ISM, but it is worth remembering that free-free
emission is actually more important in the universe as a whole than it is in our Galaxy.

The derivation of Bremsstrahlung radiation is involved, and even Draine doesn’t show it.
The derivation on the Essential Radio Astronomy course is the best I have seen:
http://www.cv.nrao.edu/course/astr534/FreeFreeEmission.html .
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Figure 4.9: Bremsstrahlung emission from wikipedia:
http://en.wikipedia.org/wiki/Bremsstrahlung

Draine gives the emissivity, the power per unit frequency, per unit volume, per steradian:

jff,ν =
8

3

(
2π

3

)1/2

gff,i
e6

m2
ec

3

(me

kT

)1/2

e−hν/kTZ2
i neni , (4.30)

where gff,i is the “Gaunt factor for free free transitions,” and ne and ni are the electron and
ion number densities, respectively. This can be simplified:

jff,ν = 5.444× 10−41gff,iT
−1/2
4 e−hν/kTZ2

i nenierg cm
3 s−1 sr−1Hz−1 . (4.31)

Throughout this discussion, I will keep ni and ne as separate terms and Draine does. Re-
member that in general ne ≈ ni, unless the plasma is really high temperature.

The Gaunt factor turns out to be very important. Classically, gff = 1 (Kramers, 1923). In
this case, the emissivity would be independent of frequency, for ν ≪ kT/h.

[Why does it depend on neni?] Two-body process.

The power is therefore

Λff = 4π

∫ ∞

0

jff,ν dν =
32π

3

(
2π

3

)1/2
e6

m2
ehc

3
(mekT )

1/2 ⟨gff⟩T Z
2
i nenierg cm

3 c−1 , (4.32)

where

⟨gff⟩T =

∫ ∞

0

dhν

kT
e−hν/kTgff(ν, T ) . (4.33)

As we will see below, ⟨gff⟩T is almost independent of frequency, so Λff ∝ neniT
0.5.



112 CHAPTER 4. IONIZED GAS (AND SOME ATOMIC)

4.6.2 The Gaunt Factor

From QM calculations, the Gaunt factor is

gff ≈ 6.155(Ziν9)
−0.118T 0.177

4 . (4.34)

This is only valid for frequencies between the plasma frequency and kT/h.

We see that the frequency dependence of the Gaunt factor is really shallow. Draine mentions
that this approximation is good to ±10% for 0.14 < Ziν9/T

3/2
4 < 250.

This leads to

jff,ν = 3.35× 10−40Z1.882
i neniν

−0.118
9 T−0.323

4 erg cm3 s−1 sr−1Hz−1 (4.35)

within the frequency range specified above, νp ≪ ν ≪ kT/h.

The free-free emissivity in the radio and microwave goes as ν−0.118!

Draine also gives the frequency averaged Gaunt factor, which leads to

Λff(T ) ≈ 1.422× 10−25

{
1 +

0.44

1 + 0.058[ln(T/105.4Z2
i K)]2

}
T

1/2
4 Z2

i nine
erg cm3

s
, (4.36)

Keep this in mind for later.

4.6.3 Opacity and Optical Depth

We know that in LTE, the energy levels are populated according to a thermal distribution,
and we can apply Kirchoff’s law: κν = jν/Bν(T ). This again is just saying that there must be
equilibrium between emission and absorption, otherwise the temperature would be changing.
Therefore,

κff,ν =
4

3

(
2π

3

)1/2
e6

m
3/2
e (kT )1/2hcν3

[
1− e−hν/kT

]
Z2

i ninegff . (4.37)

In the Rayleigh-Jeans radio limit, we can expand the exponential and input our analytical
fit to the Gaunt factor to get

κff,ν ≈ 1.091× 10−25Z1.882
i T−1.323

4 ν−2.118
9 nine cm

−1 . (4.38)

We see that free-free absorption becomes strong at low frequencies. In fact, there is a low
frequency cutoff to the Bremsstrahlung radiation caused by free-free absorption.

We can of course also define the optical depth [following essential radio astronomy course].
Worrying only about proportionalities,

τff,ν =

∫
κff,ν ds ∝ Z1.882

i T−1.323
4 ν−2.118

9 nine (4.39)
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[Essential radio astronomy course] We can now define two regimes: optically thick and
optically thin. In the radio regime, in the optically thick limit, τ ≫ 1 and the flux density

Sν ≈ Bν(T ) =
2kTν2

c2
∝ ν2 . (4.40)

In the optically thin limit, τ ≪ 1, and the flux density

Sν ≈ Bν(T ) =
2kTν2

c2
τff ∝ ν2ν−2.118 ∝ ν−0.12 . (4.41)

This gives rise to the following plot.

Figure 4.10: Bremsstrahlung spectrum from Essential Radio Astronomy Course.

Where these two regime intersect, at τ = 1, is the “turnover frequency.” The turnover
frequency can be as high as 1010GHz, but 1GHz is more common.

In the optically thin limit, the intensity detected in observations of free-free emission are
linearly proportional to the optical depth. In the radio regime, Iν = Bν(Te)τ and τff,ν ∝∫
nine ds. For convenience we can therefore define a parameter called the “emission mea-

sure,” EM:

EM =

∫
n2
e ds cm

−6 pc . (4.42)

[Draine here of course defines EM differently from the rest of the world, and uses neni.
Typical Draine!] To be useful we must assume that ne ≈ ni. Notice the units! The emission
measure for an H II region 1 pc in diameter, with a density of 1 cm−3 is 1 cm−6 pc.
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Therefore, Iν ∝ T−1.323ν−0.118EM for optically thin emission, and Iν ∝ Tν2 for optically
thick emission.

4.6.4 Free-bound Transitions

Also known as “radiative recombination.”

jfb,ν =
gb
gegi

h4ν3

(2πmekT )3/2c2
e(Ib−hν)/kT σb,pi(ν)neni , (4.43)

where gb is the degeneracy of bound state b, ge = 2 is the degeneracy of the free electron, gi
is the degeneracy of the ion, and Ib is the energy required to ionize from bound state b.

Each bound state b contributes continuum beginning at hν = Ib, cut off at high frequencies
by the factor e(Ib−hν)/kT .

For hydrogen, Ib = IH/n
2 and gb/gi = 2n2.

Figure 4.11: The emission spectrum of a T = 8000K hydrogen plasma.[Draine 10.2]

4.6.5 Synchrotron Radiation

Cosmic rays are astrophysical particles (electrons, protons, and heavier nuclei) with ex-
tremely high energies. Cosmic-ray electrons in the Galactic magnetic field emit the syn-
chrotron radiation that accounts for most of the continuum emission from our Galaxy at
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frequencies below about 30 GHz. They spiral around the magnetic field lines. In the same
way that Bremsstrahlung electrons produce free-free. At low radio frequencies, synchrotron
dominates the radiated power of the Galaxy. Synchrotron is non-thermal emission, because
it does not depend on the temperature of the electrons.

[What emits synchrotron?] Pulsars, SNRs, AGN, radio galaxies, etc.

Synchrotron radiation is polarized, because of the preferred axis along the magnetic field
lines. The polarization axis is perpendicular to the magnetic field direction as projected
onto the sky.

The individual electrons each radiate power

P =
2

3

q2a2

c3
(cgs units) , (4.44)

where a is the acceleration, q is the charge, and c is the speed of light. This is Larmor’s
formula.

The observed synchrotron spectrum is the summation of the contributions from individual
electrons. It has been found that the distribution of electron energies is a power law: n(E) ∝
E−p. Obviously, there are more slow moving electrons than fast moving ones. A typical value
for p in the ISM is 2.4.

When we average over all electrons, in the optically thin limit we find

dP

dV dν
∝ neB

(p+1)/2 ν−(p−1)/2, . (4.45)

We can see that the power increases with increasing electron density and magnetic field, but
decreases with increasing frequency.

The synchrotron spectrum has a high frequency cutoff when we run out of high energy
electrons. Like Bremsstrahlung, there is a low frequency cutoff when absorption becomes
dominant. The absorption in this case is synchrotron self-absorption.

The emissivity j for synchrotron is just the power from above divided by 4π. For free-free,
we could assume that the source function was just Sν = jν/κν = Bν(T ), and we could easily
find κν . For non-thermal emission, we can’t assume that any longer. I will state without
proof that

κν ∝ neB
(p+2)/2ν−(p+4)/2 (4.46)

and therefore

Sν =
jν
κν

∝ B−1/2ν5/2 . (4.47)

Note that the source function is independent of the power law index of the relativistic
electrons. At low frequencies, the synchrotron radiation is optically thick, and Iν ∝ Sν ∝
B−1/2ν5/2. At high frequencies, the intensity will be proportional to the emissivity coefficient:
Iν ∝ jν ∝ ν−(p−1)/2 ∝ ν−0.7.
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The frequency at which the spectrum transitions depends on the depth of the region, the
relativistic electron number density, and magnetic field strength.

One last point: the spectral index of synchrotron radiation is the power-law index of the flux
density distribution:

S ∝ να . (4.48)

Typical values are:
−0.7 for radio galaxy
−0.5 for SNRs
−3 to −2 for pulsar
−1 to 1 for AGN.

Contrast this with thermal (Bremsstrahlung) emission, which has a spectral index of α ≃ 0.1
for optically thin thermal emission. This allows us to distinguish between thermal and non-
thermal emission.

Some people define α as positive in the above equation and some as negative. Be careful!!!

4.6.6 All together (the figures)

4.7 Bound-Bound Transitions

Bound-bound transitions can result from excitation (from collisions or radiation), or from
recombination.

For excitation, we have already sketched out the relevant equations, but it’s worth repeating
here. Why is this section in the “ionized gas” portion of the course? Almost all the bound-
bound transitions we care about are from ions (or newly recombined neutrals).

Radiation is relatively straightforward, so let’s deal with collisions first. The two-body
collision rate coefficient is

⟨σv⟩ ≡
∫ ∞

0

σAB(v)vfvdv , (4.49)
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where A and B are two species. This term has units of cm3 s−1. We can usually assume a MB
distribution for fv. The quantity ⟨σv⟩ is sometimes called the “excitation rate coefficient”
γℓu, which tells you the number of excitations from state ℓ to state u in units of cm−3 s−1.
Therefore for collisions with electrons (almost always assumed), nenℓγℓu gives the number of
excitations per cc per second.

As we did before, we can assume that the upwards and downwards collisions balance (“de-
tailed balance”). Therefore, for collisions with electrons,

nℓneγℓu(T ) = nu[Auℓ + neγuℓ(T )] , (4.50)

which reduces to
nu

nℓ

=
γℓu
γuℓ

(
1 +

Auℓ

neγuℓ

)−1

. (4.51)

This equation has high and low density regimes, as we saw before. At high densities, Auℓ is
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unimportant. At low densities, the collision rate is unimportant.

We usually further parametrize σ in terms of the “collisional strength Ω, such that

σℓu(v) =
πℏ2

m2
ev

2

Ωℓu

gℓ
, (4.52)

or for MB speed distribution

⟨σℓuv⟩ =
h2

(2πme)3/2
1

(kT )1/2
Ωℓu

gℓ
,=

8.629× 10−8

√
T4

Ωℓu

gℓ
. (4.53)

The collision strength is approximately unity for most transitions, and is almost independent
of temperature. Draine tabulates some useful values in Appendix F. Keep in mind that
Ωuℓ = Ωℓu.

4.7.1 Recombination Lines

For ionized gas, some of the bound-bound transitions we discussed previously are actually
recombination lines - they result from the recombination of electrons and ions. As we saw,
recombination can take place into any electron state. If the electron recombines into an
excited state, it will then transition toward the ground state. The radiation it emits during
this transition is called “recombination lines.” This is a bit of a misnomer, since it is not the
recombination per se that is causing the lines (that causes free-bound continuum of course).
To detect these lines, the environment must be sufficiently so the atoms are not collisionally
de-excited.

The most famous recombination line is Hα, at 656.3 nm (n = 3 → 2). This line is an excellent
tracer of ionized gas, and is strong enough to be used as a measure of the total ionized
gas content of galaxies (via a narrow-band filter). Other famous lines are Hβ (486.1 nm,
n = 4 → 2), the [OIII] doublet at 459.9 nm and 500.7 nm (3P2 →1 D2 and

3P1 →1 D2), lines
of [NII], [SIII]. In images of H II regions and planetary nebulae, the red is typically Hα and
the green is frequently [OIII].

Lines with n > 40 are in the radio regime, and are therefore “radio recombination lines”
(RRLs). These lines are faint (a few Jy for the brightest H II regions, but 10mJy more
typical for faint H II regions)

As the electron cascades down the atomic levels, recombination lines are emitted at a fre-
quency of

ν0 = RMc

[
1

n2
−
(

1

n+∆n

)]
, (4.54)

where RM is the Rydberg constant for atoms of mass M , n is the electronic level, and ∆n is
the change in electronic level. The Rydberg constant is not a constant at all, it is different
for different elements:

RM = R∞

(
1 +

me

M

)−1

, (4.55)
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where me is the electron mass, M is the nuclear mass, and

R∞ =
2π2mee

4

ch3
= 1.0973731568525× 105 cm−1 . (4.56)

Therefore, heavier elements produce the RRL transitions at lower frequencies compared to
hydrogen. The frequency shift in Equation 4.54 caused by different nuclear masses (com-
monly called the “mass shift”) is important in the study of recombination lines and plays an
integral role in deriving the electron temperature of H II regions.

For n > 40 and ∆n≪ n, Equation 4.54 becomes:

ν0 ≈
2(RMc)∆n

n3
. (4.57)

The spacing between adjacent lines with the same ∆n is then

ν0(n)− ν0(n− 1) ≈ 2RMc
1

n3 − (n− 1)3
≈ 3ν

n
. (4.58)

The spacing between adjacent RRLs with the same ∆n increases linearly with decreasing n.

Figure 4.12: RRLs at radio frequencies. The height approximates the relative strength of
the lines.

4.7.2 Departure Coefficients [Draine 3.8]

RRLs provide a straightforward way of determining ionized gas velocities, and as we’ll see
they can be used to derive the temperature and density of a plasma.

In most cases we assume LTE, but that is not always a good assumption. Let’s review LTE.
[What can we say about a system in LTE?]
(1) Collisions dominate over radiation. This is the most basic condition of LTE, and all the
rest follow from it.
(2) The velocity distribution is a Maxwellian.
(3) The ionization state is given by the Saha equation.
(4) The level populations are given by the Boltzmann factor, with Tex = T .

Deviations from LTE are caused by the radiation field. In general, we have LTE for high
densities, and when the radiation field is minimized. The WIM and HIM are both at low
density, so we have to take this into consideration. Ignoring this complication, we would
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over-estimate the line intensity and under-estimate the required temperature for the detected
emission. [Gordon+Sorochenko, pg.70]

It is useful to introduce a “departure coefficient” bn to describe the departure from LTE:

bn =
n[H(n)]

nLTE[H(n)]
, (4.59)

where n is the principle quantum number. When collisions dominate (in LTE), bn = 1. The
departure coefficient compares the true population with that expected from LTE. The true
population is decreased relative to that expected in LTE due to spontaneous emission. As
the density goes up, the departure coefficients tend toward unity.

What is the critical density of RRLs? Draine shows that it is

nc ≈ 110
( ne

103 cm−3

)−1/7

T
1/14
4 . (4.60)

Therefore, for n ≲ 110, we would expect to see departures from LTE for RRLs, for typical
H II region densities.

The full definition of bn is

bn =
n[H(n)]

nLTE[H(n)]
=

n[H(n)]

nen(H+)

(2πmekT )
3/2

n2h3
e−IH/n2kT . (4.61)

We arrive at this expression from the “law of mass action.” For chemical reaction A+B ↔ C:

nLTE(C)

nLTE(A)nLTE(B)
=

f(C)

f(A)f(B)
, (4.62)

where f is the partition function per unit volume. Evaluating the above equation for recom-
bination gives the definition for the departure coefficient.

(This is just the Saha equation, but also takes into account atoms with principle quantum
number n, not just the n = 0, 1s state.)

4.7.3 Recombination Line Strengths

The line absorption coefficient in LTE for RRLs is defined as

κν =
c2

8πν20

gu
gℓ
nℓAuℓ

(
1− nu/gu

nℓ/gℓ

)
ϕ(ν) , (4.63)

where gu and gℓ are the statistical weights for levels u and ℓ, nℓ is the number density in level
ℓ, Auℓ is the Einstein A coefficient of spontaneous emission from level u to level ℓ, and ϕ(ν)
is the normalized line profile. The degeneracies for hydrogen (and all hydrogenic atoms) are
2n2.
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Figure 4.13: Departure coefficients.

The negative term in the parentheses accounts for stimulated emission. This term is absent
in LTE calculations of course.

From our definition of the departure coefficient, nn/gn ∝ bn exp(IH/n
2kT ). For α transitions

therefore, (
1− nu/gu

nℓ/gℓ

)
= 1− bn+1

bn
exp

[
− (2n+ 1)

n2(n+ 1)

IH
kT

]
(4.64)

Salem & Brocklehurst define a new parameter βn:

βn =
1− nu/gu

nℓ/gℓ

1− exp(−hν/kT )
(4.65)

Therefore,

κν =
c2

8πν2n+1,n

nnAn+1,nϕ(ν)βn
(
1− e−hν/kT

)
. (4.66)

RRLs are always optically thin, so we know that T ∝ τ ∝ κ. When dealing with LTE The
non-LTE line absorption coefficient is usually denoted κ, while κ∗ is actually the LTE term.

If βn is not unity, we have stimulated emission, and in extreme cases RRLs can be masing.
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Figure 4.14: Draine Figure 10.3

The total RRL line strengths for α lines is I ∝ τ ∝ κ ∝ ν−1An+1,n. For RRLs, A ∝ n−5 (see
Essential radio astronomy course), but in the radio regime this factor makes little difference.
We can therefore say that for lines of a given ∆n, the line strength is inversely proportional
to the frequency.

It is important to remember that the intensity is misleading. We know that Hα is the
strongest recombination line, but its frequency is quite high! This is because the flux density
S ∝ ν2T , so S ∝ ν. Flux density is the real quantity of interest.

4.8 Propagation of EM Radiation through a Plasma

Light in a vacuum travels at the speed of light. The ISM is not a vacuum, and the speed
light travels is reduced. This effect is small and dependent on the number density of free
electrons. Because the path lengths are enormous, the small effects add up to a measurable
effect: light is delayed as it passes through the ISM and this delay is frequency dependent.

Just for a frame of reference, Draine notes that for a pulsar 3 kpc away, the DM ≈ 102 cm−3

pc. At 1 GHz, the time delay will be ∼ 0.4 s after traveling at the speed of light for 104 yr.
Draine lists the mean value for ne in the ISM is ∼ 0.05 cm−3, although I have seen 0.03 cm−3

used also.

The following notes are from Michael Lam when he guest lectured for me in 2016.
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Figure 4.15: From Balser et al., 2011.

We consider the oscillation of cold (the electron thermal speeds are negligible), free electrons
in a propagating electric field. For a single electron, we have

mer̈ = eE. (4.67)

The current density is
J = ρv = neeṙ (4.68)

and its time derivative is

∂J

∂t
=

∂

∂t
(neeṙ) = (neer̈) = nee

(
eE

me

)
=
nee

2

me

E. (4.69)

Let’s now assume we have a linearly-polarized plane wave propagating in the x-direction.
Therefore, we can write the electric field as

E = E0 exp [i(kz − ωt)] x̂. (4.70)

This equation satisfies the wave equation, so it will be useful later to determine the two
quantities:

∇2E =
∂2

∂z2
E0 exp [i(kz − ωt)] x̂ = −k2E0 exp [i(kz − ωt)] x̂ = −k2E (4.71)

∂2E

∂t2
=

∂2

∂t2
E0 exp [i(kz − ωt)] x̂ = −ω2E0 exp [i(kz − ωt)] x̂ = −ω2E (4.72)

We will also use three of Maxwell’s equations in Gaussian (cgs) units:

(Gauss)∇ · E = 4πρ (4.73)

(Faraday)∇× E = −1

c

∂B

∂t
(4.74)

(Ampere)∇×B =
1

c

(
4πJ+

∂E

∂t

)
. (4.75)
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We start by taking the curl of both sides of Eq. 4.74 and then pluging in values appropriately

∇× (∇× E) = ∇×
(
−1

c

∂B

∂t

)
(4.76)

→ ∇ (∇ · E)−∇2E = −1

c

∂

∂t
(∇×B) (4.77)

→ ∇ (4πρ)−
(
−k2E

)
= −1

c

∂

∂t

[
1

c

(
4πJ+

∂E

∂t

)]
(4.78)

→ 4π�
�∇ρ+ k2E = −4π

c2
∂J

∂t
− 1

c2
∂2E

∂t2
(4.79)

→ k2E = −4π

c2
nee

2

me

E+
ω2

c2
E (4.80)

=⇒ k2c2 = −4πnee
2

me

+ ω2 (4.81)

We can define the (angular) plasma frequency as

ω2
p ≡ 4πnee

2

me

(4.82)

and therefore we arrive at the dispersion relation

ω2 = k2c2 + ω2
p. (4.83)

The plasma frequency is related to the electron density as

νp =
ωp

2π
≈ 8.979 kHz

( ne

cm−3

)1/2

. (4.84)

The propagation speed is given by the group velocity

vg ≡
∂ω

∂k
=

∂

∂k
ω (4.85)

=
∂

∂k

(
k2c2 + ω2

p

)1/2
(4.86)

=
�2kc2

�2
(
k2c2 + ω2

p

)1/2 (4.87)

= �
�1
c

(
ω2 − ω2

p

)1/2
c�2

ω
(4.88)

= c

(
1−

ω2
p

ω2
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≡ cµ (4.91)

where µ ≤ 1 is the index of refraction. Below the plasma frequency, µ is imaginary and the
waves cannot propagate. For the ionosphere, the electron density peaks at about 106 cm−3

and so the plasma frequency is about 9 MHz. In the ISM, for ne ∼ 0.1 cm−3, the plasma
frequency is about 3 kHz.
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4.8.1 Dispersive Time Delay

The total propagation time as a function of path length through the medium is

ttotal =

∫ D

0

dl
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= tgeometric + tdispersive. (4.97)

where in the last step we broke up the total time into the geometric travel time and the
dispersive delay. Therefore,

tdispersive =
e2

2πmec

∫ D

0
ne(l)dl

ν2
(4.98)

≡ K
DM

ν2
(4.99)

≈ 4.149 ms

(
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)( ν
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)−2

(4.100)

where DM ≡
∫ D

0
ne(l)dl is the dispersion measure andK ≡ e2

2πmec
≈ 4.149 ms GHz2 pc−1 cm3

is the dispersion constant.

4.8.2 Scintillation

The intensity of light we receive from astronomical objects is often found to vary over short
time scales. This is called scintillation, and is the technical term for the twinkling of stars.

Scintillation results from small-scale changes in the medium between the observer and the
source. The twinkling of stars is caused by small-scale changes in our atmosphere due to
turbulence. We also see scintillation in the intensity of pulsars and background radio sources.
Scintillation is caused by turbulence in the medium.

Consider EM radiation scattering off a “screen” of electrons. If the scattering angle is
sufficiently large, there are multiple possible paths for the radiation to take to get to the
observer. The radiation from these multiple paths can constructively and destructively
interfere, leading the intensity variations.

Scintillation is minimized for sources at small distance and at high frequency.
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“Extreme” scattering events have also been observed toward extragalactic radio sources.
The rotation of the Galaxy occasionally causes material to pass between background radio
sources and ourselves. Sometimes there is a little plasma blob in between us and the source.
Scattering off this plasma blob results in extreme scattering events where the brightness
increases by a factor of ∼ 2.

The plasma blobs must be small to agree with the timescale of intensity enhancements, but
we still don’t have a good model for how they can operate. Analysis of the likely blob
properties indicates that they are not in pressure equilibrium with their surroundings, and
should actually expand. If this is correct, they must be very transient, which would explain
their rarity.

[From Cal. Tech course http://www.its.caltech.edu/∼kamion/Ay126/Bfields.pdf]

4.8.3 Faraday rotation

If the plasma is magnetized, then there is an additional effect that acts on the polarization
of the electromagnetic wave. The Faraday rotation effect appears during the propagation of
electromagnetic waves in a magnetized plasma.

A linearly polarized wave can be decomposed into opposite-handed circularly polarized com-
ponents. The right-handed and left-handed circularly polarized waves propagate with differ-
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ent phase velocities within the magneto-ionic material. Draine says

k2c2 = ω2 −
ω2
p

1± ωB/ω
, (4.101)

where the cyclotron frequency is

ωB ≡
eB∥

mec
(4.102)

and the ± refers to the two circular polarizations.

This effectively rotates the plane of polarization of the electromagnetic wave. Suppose there
is a magnetic field in the plasma directed along the line of sight. Electrons will then spiral
in one particular direction around this magnetic field, and so the indexes of refraction for
right- and left-circularly polarized electromagnetic waves will differ. The propagation speeds
for right- and left-circularly polarized waves will therefore differ slightly. Recalling that
a linearly-polarized wave is a superposition of two circularly-polarized waves, the linearly-
polarized wave will undergo something like a beat phenomenon that occurs when two waves
of slightly different frequencies are superposed. What this results in is a rotation of the
linear polarization of a linearly polarized EM wave by an angle, Ψ = RMλ2, where λ is the
wavelength and

RM =
1

2π

e3

m2
ec

4

∫ L

0

neB∥dL (4.103)

If the DM and RM are both measured, after evaluating the constants the electron-density-
weighted mean line-of-sight magnetic field is

⟨B∥⟩ =
RM

8.12× 10−5radcm−2

cm−3 pc

DM
µG . (4.104)

This can be measured along many different lines of sight, and also to pulsars at different
distances along similar lines of sight, to get information about the three-dimensional magnetic
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field. Measurements indicate magnetic fields B ∼ 2 − 4µG in the spiral arms and slightly
smaller in the interarm regions, with a sign flip between arm and interarm.

Faraday depolarization removes the relationship between the rotation measure and λ2. It is

DP =

(
PI1
PI2

)(
ν2
ν1

)α

, (4.105)

where α is the synchrotron spectral index.

4.9 HII Regions

There is unanimous agreement in the astronomical community that H II regions are the
most interesting and important objects in the Universe. Let’s spend a little more time
understanding their physics.

H II regions are technically any ionized region of the ISM. In practice, however, this term
is reserved for the plasma spheres surrounding early-type (OB) stars. OB stars emit much
of their energy in the UV portion of the spectrum, and thus can ionize their surrounding
medium. The cutoff point between which stars can ionize their surroundings appreciably,
and which cannot is about B2. This is somewhat arbitrary though as even the Sun can ionize
its surroundings.

When talking about H II regions we often think only about main sequence stars. Evolved
stars can also create H II regions, although these are more rare due to the shorter lifetimes
in these evolved states.

4.9.1 Strömgren Spheres

Strömgren (1939) derived the size of an idealized, fully ionized, pure hydrogen, spherical
plasma zone surrounding an H II region. This turns out to be not such a bad set of assump-
tions!

In an H II region, we should have ionization balance: the number of ionizations per second
should balance the number of recombinations per second. If this were not the case, nebulae
would be growing or shrinking. The number of hydrogen ionizing, or “Lyman continuum”,
photons is Q0 (also Nly sometimes used). Equating ionization and recombination:

Q0 =
4π

3
R3

SαBn(H
+)ne ≃

4π

3
R3

SαBn
2
e. (4.106)

Therefore,

Rs =

(
3Q0

4πn2
eαB

)1/3

= 3.17Q
1/3
0,49n

−2/3
2 T 0.28

4 pc . (4.107)

From theoretical calculations, Q0,49 corresponds to the emission from an O6V star (which
for reference is the spectral typr of the largest star in Orion’s Trapezium). We see that
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Strömgren spheres should be on the order of pc. This matches observations (e.g., again, of
Orion).

What assumptions go into this derivation?
(0) Ionization exactly balances recombination.
(1) The nebula is entirely hydrogen.
(2) The ionized fraction in the nebula is 100%.
(3) The boundary between the nebula and the surrounding medium is sharp (otherwise,
what would be the meaning of a Stromgren sphere?).
(4) The nebula can be characterized by a single density.
We must assume the first assumption is valid, but we can examine some of the others.

4.9.2 Helium Ionization

The above assumes that the nebula is pure hydrogen. What effect would helium have on the
size of an ionized region?

The recombination rate for He is ∼ 1.9 times greater than that of H (Draine chapter 14,
although I wasn’t able to work out how exactly he got this number, it’s likely just from
the recombination rates), for T ≃ 104K. Since the abundance of He is ∼ 10% that of H by
number, the volume rate for He recombinations will be ∼ 18% that of H.

The first ionization potential for He is 24.6 eV. We therefore need a relatively hard radiation
field to ionize He (thus the assumption of a pure H nebula above). Smaller stars that are able
to create HII regions nevertheless may not be able to ionize He appreciably. Q1 is the rate
for He ionizing photons. If Q1 < 0.15Q0, the He ionization zone will be smaller than the H
ionized zone. If Q1 > 0.15Q0, they will have the same volume, and He will be singly ionized
and H will be fully ionized. This corresponds to an O6V star (Draine table 15., Figure 15.5).
In no case will the He ionized zone be larger than that of H, since no stars have Q1 > Q0.

If the ionized spheres completely overlap, the ratio of the number of helium ions must equal
the ratio of the helium and hydrogen densities:

N(He+)/N(H+) = nH/nHe ≈ 0.1 . (4.108)

Since n = N/V olume, R ∝ (N/n)1/3 and

RHe

RH

=

(
NHe

NH

nH

nHe

)1/3

, (4.109)

if N(He+)/N(H+) < nHe/nH the helium ionized zone will be smaller than that of hydrogen.

Draine derives the relationship between these ratios and the hardness of the radiation field.

N(He+)

N(H+)
≈ 0.68(Q1/Q0)

1− 0.17(Q1/Q0)
. (4.110)

If helium is ionized, of course it is removing photons from the nebula that would otherwise
ionize hydrogen. This decreases the size of the hydrogen ionized region.



130 CHAPTER 4. IONIZED GAS (AND SOME ATOMIC)

Figure 4.16: Draine 15.5. Ratios of the hydrogen and helium ionization rates, and zone sizes.

4.9.3 Fractional Ionization [see Dyson & Williams]

We assumed that the neutral fraction in a Stromgren sphere is exactly zero. Otherwise, the
region would be larger since ionizing photons could travel further. Is this a good assumption?
How ionized are H II regions? Is there a neutral fraction within them?

In the steady state condition, again assume ionization balance. In this case:

n2
eαBx

2 =
Q(r)

4πr2
ne(1− x)σpi , (4.111)

where x is the ionization fraction (x = 1 is fully ionized), r is the distance from the center
of the nebula, and σpi is the photoionization cross section.

We are assuming here that the radiation just falls of as r−2.

Rearranging, and inserting 4/3πr3αB = Q(0),

x2

1− x
=
Q(r)

Q(0)

neσpiRs

3y2
, (4.112)

where y = r/Rs.

Putting in reasonable values here, we find that x ≃ 1 and x2 ≈ 1. Therefore, it is a good
assumption that H II regions are completely ionized.
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4.9.4 The Boundary of a Nebula [D+W 5.2.7]

Our derivation of Rs assumed that x ≈ 1 everywhere in the nebula. This obviously cannot
be the case everywhere, as there must be a transition zone with the neutral medium outside
the H II region. How sharp-edged is this transition? If it is not very sharp, what is the
physical meaning of a Strömgren radius?

Let’s define the flux of ionizing photons J = Q(0)/4πr2. We know that the flux at r + dr is
J + dJ , and so

J + dJ = J − nHσpiJdr . (4.113)

Since nH = n(1− x),
dJ

dr
= n(1− x)σpiJ . (4.114)

We want to eliminate J from the equation, which we can do easily with our previous relation
for ionization balance:

x2

x− 1
=
J

n

σpi
αB

, (4.115)

which gives
2x(x− 1)− x2

(x− 1)2
dx

dr
=

2− x

x(1− x)2
dx

dr
=
dJ

dr

σpi
αB

, (4.116)

dx

dr
= σpin

x(1− x)2

2− x
. (4.117)

This equation can be easily solved, and we find that the degree of ionization falls really
quickly, over a distance of ∼ 10(σpin)

−1, or a few mfps. This is a very small distance, so we
can say that ideal H II regions are indeed sharp-edged.

One caveat to this derivation is that real H II regions don’t expand into a homogeneous
medium. Therefore, some directions will have a larger extent than others. Although sharp-
edged in each direction, real H II regions are not necessarily spherical.

4.9.5 Evolution of an H II Region

The Strömgren radius is not reached instantly. H II regions expand as they age. This
expansion is typically characterized by two phases: (1) expansion of the H II region’s size to
reach the Strömgren radius, and (2) expansion beyond the Strömgren radius until the H II

region attains pressure equilibrium with the ambient gas.

The first phase of H II region evolution begins when a young, massive OB star first begins to
produce UV photons. The ionization of neutral hydrogen surrounding the young star creates
a region of ionized gas. The boundary between this ionized gas and the neutral medium, the
ionization front, expands rapidly to reach the Strömgren radius as the surrounding hydrogen
is ionized. The characteristic time for the expansion to reach the Strömgren radius is the
recombination timescale (From Spitzer):

t = (nnαB)
−1 , (4.118)
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where nn is the ambient density of the neutral medium. For a characteristic density at this
phase, (nn ≈ 105), this initial expansion would take only a few years. [This doesn’t seem
to jibe with observations, but is maybe only illustrative...] The expansion of the Strömgren
radius is supersonic. Therefore the density inside and outside the ionization front are unable
to equilibrate. Until the H II region reaches the size of the Strömgren radius, the ionized and
neutral gas are essentially at rest with respect to one another, although the ionization front
itself is of course expanding.

The second phase of H II region evolution begins when the H II region’s size reaches approx-
imately the Strömgren radius. During photo-ionization, the number of particles within the
H II region doubles. Coupled with the increased temperature inside H II regions, this creates
a pressure inbalance and leads to the expansion of the H II region ionization front (Oort,
1954). At this stage the rate of expansion of the ionization front drops to the sound speed of
the ionized gas and a shock front is created. This shock front moves supersonically into the
ambient medium, ahead of the ionization front. The time-evolution of the ionization front
radius is given by Spizer (1978):

Ri = Rs

(
1 +

7Ct

4RS

)4/7

. (4.119)

where Ri is the H II region radius, Rs is the Strömgren radius, C is the sound speed in the
ionized material, and t is the elapsed time since the Strömgren radius formed in seconds. An
H II region will cease its expansion when the pressure of the ionized gas is equal to that of
the ambient medium:

2nikTi = nnkTn , (4.120)

where ni, Ti and nn, Tn are the is the gas density and temperature of the ionized and ambient
mediums, respectively, In pressure equilibrium, the final H II region radius, Rf , is:

Rf = Rs(2Ti/Tn) . (4.121)

Under the assumption of ionization balance, and for typical H II region values, the final radius
of an H II region is about 30 times the Strömgren radius, Rf ≃ 30Rs.

It is very difficult for H II regions to achieve pressure equilibrium with the ambient interstellar
medium (ISM) because OB stars are too short-lived. Therefore, H II regions expand their
entire lifetimes. Smaller H II regions should statistically be younger and larger H II regions
should statistically be the oldest.

http://adsabs.harvard.edu/abs/2011ApJ...733...16I
http://adsabs.harvard.edu/abs/1989ApJS...69..831W

4.9.6 Nebular Diagnostics

[What do level populations depend on? Density and temperature, which combine to set the
collision rate/energy per collision!] This can be really powerful. If we can determine the
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level populations through measurement of the line strengths, we can back out the density
and temperature.

To be useful, we need abundant elements with accessible energy levels that can be collisionally
excited, and from which we can observe emission or absorption lines. Luckily, there are plenty
of such elements. This discussion will focus on plasma, since at the temperature and density
of neutral gases these conditions are not met.

There are two main things we want to learn: temperature and density. The best lines to
use for temperature determinations come from elements that have large differences in energy
between excited states comparable to kT. [Why?] The energy (temperature) and frequency
(density) of the collisions will be important. The best lines to use for density determinations
are those with closely-spaced energy levels. Each collision, regardless of energy, will populate
a level. The temperature of the plasma will not be a large factor, only the frequency of
collisions (density).

4.9.7 Temperature Diagnostics Using Optical/UV Lines

Six-electron atoms and ions turn out to be very important for temperature determinations
of 104 K plasma. 2p2 is the lowest configuration. The lowest term is 3P, the first excited
terms are 1D and 1S. If the 1S term is at low enough energy (E/k ≲ 70, 000 K) so that
collisional ionization in 104K gas is not prohibitively slow, and the abundance is not too
low, we get emission from the 1D and 1S levels. The relative strengths of the lines are very
sensitive to temperature, because the difference in energy levels is great. Therefore, at low
temperatures, collisions will not efficiently populate 1S, no matter how frequent. At high
temperatures, they will.

What are 6-electron atoms and ions? CI, NII, OIII, FIV, NeV, etc. C is easily ionized and
so is relatively rare. FIII and NeIV have high ionization potentials so it’s hard to get to FIV
and NeV. So NII and OIII it is! Similar arguments apply to 8/14/16-electron atoms/ions.

Consider a three-level 6-electron ion. In the low density limit, all ions will be in the ground
state 3P0. Every collisional excitation will be followed by radiative de-excitation, at low densi-
ties (high densities will collisionally de-excite). The “branching ratios” are determined by the
Einstein A coefficients. For example, the probability of a 4 → 3 transition is A43/(A41+A43)
(the 4 → 2 and 4 → 0 transitions are forbidden by ∆J = 2 and ∆J = 0, so their Einstein
As are tiny and can be ignored). The power radiated per unit volume for the 4 → 3 and
3 → 2 transitions is:

P (4 → 3) = E43[n0C04]
A43

A43 + A41

(4.122)

P (3 → 2) = E32

[
n0C03 + n0C04

A43

A43 + A41

]
A32

A32 + A31

, (4.123)

where the C terms are collisional excitation rates in units of cm−3 s−1. Note that for a
higher number of levels, these expressions will get complicated! Therefore, n0C is a rate
in s−1. The n0C03 term gives collisions directly to the 3 level, while the n0C04

A43

A43+A41
term
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gives radiative transitions into the 3 level. The ion collision rates are given by the expression
(Draine Chapter 2):

Cℓu = 8.629× 10−8T
−1/2
4

Ωℓu

gℓ
e−Euℓ/kTne cm

−3 s−1 , (4.124)

where Ωℓu is the “collision strength,” a QM-calculated term. We are dealing here with
electron-ion collisions. [Why? Electrons are energetic and fast-moving.]

We can therefore calculate theoretical line ratios for a range of densities, and compare those
to that observed.

Draine mentions that in the limit that ne → 0, the emissivity ratio is

j(4 → 3)

j(3 → 2)
=
A43E43

A32E32

(A32 + A31)Ω04e
−E43/kT

[(A43 + A41)Ω03 + A43Ω04e−E43/kT ]
. (4.125)

Here we are using emisivities. The emissivity is jν = 1/(4π)nuAuℓhνϕν , and has units of
power per unit frequency per unit solid angle per unit volume. How did Draine derive the
above equations? We want to know the density nu = nℓCuℓ. In LTE, we know that the
source function Sν = jν/κν = Bν(Tex). We are free to use j or κ to understand fluxes and
intensities, but we’ll use j here.

OK, so the above is a little complicated as far as expressions go. The point here is that only
atomic physics go into the ratio. If we know the atomic physics, a measurement of the line
ratio will give you the temperature.



4.9. HII REGIONS 135

This only applies in the low density limit. How low density? Below the critical density is a
good guess! So each line ratio will have a range of densities over which it is appropriate. At
higher densities, the line ratio depends on the density itself, which complicates matters.

Figure 4.17: Example line ratios used for temperature diagnostics. [Draine 18.2]

4.9.8 Density Diagnostics

We can use fine-structure lines as density diagnostics. The energy difference between these
levels is tiny, and therefore all collisions can cause excitation to the upper level. The density
will determine the line strength ratios, not the temperature.

We want here ions with triplet ground states. Again NII and OIII are the most often used.
In the low-density limit,:

j(2 → 1)

j(1 → 0)
≈ Ω20e

−E21/kT

Ω10 + Ω20e−E21/kT

E21

E10

. (4.126)

In the high density limit,

j(2 → 1)

j(1 → 0)
=
g2A21E21

g1A10E10

e−E21/kT ≈ g2A21E21

g1A10E10

, (4.127)

since the energy difference of these transitions is so small compared to kT .
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Figure 4.18: Densities using fine-structure lines.
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Figure 4.19: Cooling function contribution from various lines. [Draine 27.1]

The additional benefit of using these fine-structure lines is that they are essentially free from
extinction, since they are found in the mid- to far-infrared. The bad thing is many are
difficult to observe, because ground-based facilities cannot observe those wavelengths.

4.9.9 Temperature Gradients in the Galaxy

The H II regions in our Galaxy have been found to have a temperature gradient such that
H II regions near the Galactic center have low temperature and H II regions far from the
Galactic center have high temperature. Why would this be?

http://adsabs.harvard.edu/abs/2011ApJ...738...27B
http://adsabs.harvard.edu/abs/1983MNRAS.204...53S
http://adsabs.harvard.edu/abs/1996ApJS..106..423A
http://adsabs.harvard.edu/abs/1997ApJ...478..190A
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Figure 4.20: Cooling curves as a function of temperature for two densities in the ISM (from
Draine book).



Chapter 5

Dust

[Pogge Notes] Up until now we have been concerned primarily with physical properties in
the gaseous phases of the ISM. We now turn our attention to a solid-state component:
Interstellar Dust Grains.

Dust grains are solid, macroscopic particles composed of dielectric and refractory materials.
As such, we have to deal with different and fundamentally less well-understood physics.
Where before we have used quantum mechanics of atoms to explain the gas-phase spectra
of atomic and molecular regions in the ISM, here we must consider macroscopic particles,
and are largely dealing with the properties of solid bodies. Many of the physical details are
empirical as we do not yet know the precise composition of dust grains, nor do we know
their precise physical properties.

Much of the physics we will discuss is based on tentative explanations of observed phenom-
ena. Nobody has yet convincingly been able to produce grains in the laboratory, much less
reproduce the conditions they would experience in interstellar space, although great progress
is being made along these lines. Materials are known to change their properties under con-
ditions of radiation bombardment (especially energetic particles like cosmic rays), and due
to the inclusion of impurities. For example, we can measure the dielectric constants of pure
water or CO2 ices in the laboratory, but are unsure as to the degree we can rely upon those
measurements for so-called “dirty ices” (those with embedded mineral impurities), or even
pure ices that have been subjected to cosmic-ray bombardment in interstellar space. We can
learn about dust in three main ways (Draine Ch.21 in addition to Pogge notes):

I. Interaction with starlight:
We infer the presence of dust grains along a given line of sight by their effects upon starlight
passing through them. These effects include:
1) Total and wavelength-selective extinction of starlight passing through dusty regions due
to a combination of absorption and scattering.
2) Reflection (scattering) of starlight by dusty clouds located behind bright stars (Reflection
Nebulae).

139
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3) Polarization of light either by scattering, or by passage through regions with macroscop-
ically aligned non-spherical dust grains.
4) Absorption of starlight in Silicate bands, or various ice bands (e.g., H2O and CO2 ices).
5) Small angle scattering of X-Rays, resulting in “scattered halos” around X-Ray point
sources.

II. Emission from dust grains:
Dust grains also emit electromagnetic radiation:
1) Thermal continuum emission from dust grains in radiative equilibrium with the local
radiation field. This radiation emerges at mid- to far-IR wavelengths and is brightest near
100µm.
2) Thermal continuum emission from non-equilibrium heating of tiny grains emitted at near
to mid-IR wavelengths (1-25µm). These are also sometimes known as “Sellgren Grains”.
3) IR emission bands due to bending and stretching modes of heated grains.
4) Radio continuum emission from rotating grains (both electric and magnetic dipole ra-
diation). This has only recently been discovered as part of the Galactic radio background
in recent years, and the explanations are compelling but still tentative. Emission is near
30 GHz.

III. Less Direct Methods for Learning about Dust:
1) Gains preserved in meteorites
2) Depletion of elements in the ISM (missing elements presumably locked up in dust)
3) The abundance of H2, which is known to form on dust grains
4) The temperature of H I and H2, which in part is due to heating of photo-electrons ejected
from dust grains.

How important is dust? In our Galaxy the gas-to-dust mass ratio is about 100:1. Since the
ISM is about 10% of the baryonic mass of the Galaxy, dust grains comprise roughly 0.1%
of the total. At the same time, they absorb roughly 30-50% of the starlight emitted by the
Galaxy and re-radiate it as far-infrared continuum emission. This means that only 0.1% of
the baryons are ultimately responsible for a third to a half of the bolometric luminosity of
the Galaxy!

Dust grains are also the primary sites of molecular formation, and are thought to be re-
sponsible for essentially all of the H2 in the ISM. Molecular chemistry is impossible without
dust grains to act as reaction sites. Finally, the formation of planetary system is thought to
begin when dust grains in a protostellar disk begin to coagulate into larger grains, leading
to planetesimals and eventually to planets, carrying their complex organic molecules with
them. Dust is not only the principle molecule builder, it might also be thought of as one of
the principal ingredients of planetary formation, and life.

Further Reading:
Two excellent recent reviews on interstellar dust are by Bruce Draine, the first an Annual
Reviews article [2003, ARAA, 41, 241] and his Saas-Fee lectures from 2003. Both are available
in PDF format from astro-ph (astro-ph/0304489 and astro-ph/0304488, respectively) and
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online. They cover the same material, but the Saas-Fee lectures go into a little more depth
than the ARAA article. Both go beyond the basics covered here and are excellent resources
for learning more.[End Pogge Notes]

5.1 Interstellar Extinction [Draine Chapter 21]

As noted earlier, Barnard (1907, 1910) first noticed that stars were dimmed by an absorbing
medium. This was confirmed by Trumpler (1930).

Remember: extinction = absorption + scattering!

The interaction of light with dust remains the most direct way to study dust. Let’s assume
we are observing a star through a dusty region. Considering absorption only,

Iλ = Iλ,0e
−τλ . (5.1)

This assumes that all of the extinction is between the source and us, and that there is no
scattering of light into our line of sight (which would introduce the source function into the
above equation). τλ here is the dust extinction.

Rather than deal with τλ, astronomers prefer to work with Aλ, the extinction measured in
magnitudes:

Aλ = mλ −m0
λ , (5.2)

where mλ is the magnitude observed and m0
λ is the un-extincted magnitude that would be

measured in the absence of extinction. You can see that mλ > mλ(0), so Aλ is positive. In
the situation with only extinction,

Aλ = 2.5 log10[F
0
λ/Fλ] (5.3)

or, plugging in Equation 5.1,

Aλ = 2.5 log10(e)× τλ ≈ 1.086τλ . (5.4)

Sometimes you will see

[F 0
λ/Fλ] = 10−0.4Aλ . (5.5)

[Kwok 10.2] It is also useful to work with our linear extinction coefficient κν . For a spherical
object of radius a, the absorption coefficient in cm−1 is:

κν = πa2nd , (5.6)

where nd is the dust number density. When a ≫ λ however, this equation is not valid. We
need to introduce a dimensionless efficiency parameter Qν(a), such that

κν = πa2Qν(a)nd , (5.7)
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Figure 5.1: Extinction versus inverse wavelength on a typical sight line in the local diffuse
ISM [Draine 21.1]

Note that this is just a different way of dealing with the cross section. For gas-phase physics,
we computed different cross sections for each transition. For dust, we use the actual radius
a, but use an efficiency parameter Qν .

Of course, τν =
∫
κν ds, so

τ =

∫
πa2Qνnd ds = πa2QνNd =

nd

nH

πa2QνNH . , (5.8)

where Nd is the dust column density, NH is the hydrogen column density, and the same for
the volume densities. When combined with Equation 5.4,

AV = 1.086πa2QVNd = 1.086
nd

nH

πa2QVNH . (5.9)

The fraction nd/nH is the “dust to gas number ratio.” We frequently want the gas-to-dust
mass ratio, which is usually assumed to be 1/100. Be careful!

5.1.1 The Reddening “Law”

The “extinction curve,” which is Aλ as a function of frequency rises with decreasing wave-
length. This gives rise to “reddening” of stars as the blue light is selectively attenuated. The
exact form of the reddening curve tells us about the composition and size distribution of the
dust particles.

We characterize the extinction curve with a parameter RV , the ratio of total to selective
extinction:

RV =
AV

AB − AV

=
AV

E(B − V )
, (5.10)
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Figure 5.2: Extinction relative to extinction in band I for various values of RV [Draine 21.2]

where V subscripts refer to the “visible” photometric band (λ ≈ 550 nm), and B refers to
the “blue” photometric band (λ ≈ 430 nm), and E(B − V ) is the color excess, or simply
the reddening.

The average value of RV in the MW is 3.1. This varies, however. In dense molecular clouds
RV ≈ 5 (perhaps due to differences in the grain size distribution). The values for RV are
not bimodal though, and many values have been measured (Draine says 2.1 to 5.7). RV is
an empirical factor.

Higher values of RV lead to flatter extinction curves (less wavelength dependence). As
RV → ∞, we have an ideal “gray body” absorber. That RV is not close to ∞ tells us that
dust does not absorb as a gray body (which is obvious from observations of reddened stars).

On example of a gray body is fog on Earth. There is essentially no wavelength dependence
for fog. Also, when you are in fog, you are inside a cloud - how cool is that!?

5.1.2 Shape of the Extinction Curve

The extinction curve has a characteristic shape. The curve itself is usually given in Aλ/Aref ,
where “ref” is some reference wavelength.

Draine mentions a model of Cardelli (1989) that uses six parameters to reproduce the ex-
tinction curve. The general shape of the extinction curve from the UV to NIR is Aλ ∝ λ−1.
The prominent bump is called the 2175Å bump (more on this in a bit).

If the dust grains were large compared to the wavelength, the extinction cross section would
be independent of wavelength, with RV = ∞. Since extinction rises for decreasing wave-
length, the grains smaller than the wavelength must be contributing to the extinction, down
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to λ = 0.1µm. There must be a population of grains with radii A ≲ 0.015µm.

As we have seen before for H I and molecular gas, dust is well mixed with the gas [what is
evidence for this?]. There is a linear correlation between dust and gas quantities:

NH

E(B − V )
= 5.8× 1021Hcm−2mag−1 . (5.11)

or, when RV = 3.1,

AV

NH

=
3.1

5.8× 1021Hcm−2mag−1
= 5.3× 10−22mag cm2H−1 (5.12)

This is a pretty fantastic expression. We need only measure the extinction to derive the H I

column density.

The 2175 Å Bump: The strongest feature in the interstellar extinction curve is a broad
“bump” centered at 2175±50Å where there is additional absorption above the roughly linear
behavior at adjacent wavelengths. This is generally attributed to particles rich in carbon,
either in the form of graphite, hydrogenated amorphous carbon grains, or various aromatic
forms of carbon, but models have not yet succeeded in reproducing all of the details (like
variations in the central wavelength and the width of the feature). It is notable that the
feature is a strong function of the metallicity of the gas, with the UV bump appearing slightly
weaker in the LMC extinction curve (metallicity ∼ 50% solar), but essentially absent in the
SMC extinction curve (metallicity ∼ 10% solar). While there are many ideas, at present the
carrier of the 2175 Å feature is basically unidentified.

Mid-Infrared Silicate Features: The strongest of these are a set of broad bands cen-
tered roughly at 9.7µm and 18µm. The 9.7µm feature is associated with Si-O bending and
stretching modes in Silicate minerals that generally arise around 10µm, and so its identifica-
tion is fairly secure. The fact that the 9.7µm band is fairly featureless, unlike what is seen in
laboratory silicate crystals, suggests that this “astrophysical” silicate is primarily amorphous
rather than crystalline in nature. The 18µm band is likely due to O-Si-O bending modes in
silicates, and is also relatively securely identified. A band at 11.3µm has been tentatively
identified with Si-C stretching/bending modes, and is usually seen in dust envelopes around
Carbon stars. Because these compounds are attached to solid objects, the energy levels are
distorted from the pure molecular bands seen in the laboratory, making exact one-to-one
identification difficult.

3.4 µm Aliphatic C-H feature: This is a broad extinction feature at 3.4µm seen along
lines of sight where the interstellar extinction is very high (AV ≳ 10) associated with refrac-
tory grain material since it is often seen in regions of diffuse atomic gas. It is identified as
a C-H stretching mode in “aliphatic” hydrocarbons (organic molecules with carbon atoms
joined in straight or branched chains).

The origin of this feature is still unclear, but suggestions include aliphatic hydrocarbon
residues produced by UV photolysis of ice mantles on grains, hydrogenated amorphous car-
bon, and hydrocarbon mantles on silicate grains.
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Interstellar Ices: The strongest ice feature is the 3.1µm O-H stretch band in water (H2O)
ice, two unidentified features at 6.1 and 6.8µm, and a band at 15.2µm identified with CO2

ice (see Whittet et al. 1996, A&A, 315, L375 and below). Other ice bands are CO, CH4,
NH3, and CH3OH. These are generally thought to arise in icy “mantles” that encase dust
grains found in dense molecular clouds. Ice mantles are not found on grains in the general
ISM, as exposure to the general interstellar radiation field sublimes the ices (for example,
H2O ice features in the Taurus dark cloud are only seen when AV ≳ 3.3). The ice bands
are smeared out into broad features because they are in a solid state phase condensed onto
a solid grain. An ice feature called XCN at 4.62µm is attributed to CN bonds, but the “X”
carrier is so far unidentified.

CO: CO is a molecule most commonly observed in the gas phase, but it can condense as
a “frost” onto dust grains when the temperature drops below ∼ 17 K. Such condensation
may lead to significant depletion of CO out of the gas phase deep inside molecular clouds.
CO2 has not yet been positively observed in the gas phase (despite numerous searches) but
it is seen as an ice condensed onto grains surfaces. In both cases, the shape of the ice band
depends on the presence of H2O and the state of the molecules in the ice phase.

Polycyclic Aromatic Hydrocarbon (PAH) Features: These are a family of narrow
emission bands, prominently at 3.3, 6.2, 7.7, 8.6, and 11.3µm(and other weaker ones), some-
times with associated weaker features visible in bright sources, and underlying continua.
Previously called the “Unidentified IR Bands” (or UIR bands in some older papers), they
are now most often referred to generically as the “PAH features” because the most likely
carriers appear to be polycyclic aromatic hydrocarbons. They are seen towards PNe, H II

regions, reflection nebulae, and young stellar objects, primarily in dense regions. All of the
PAH features have been observed in the diffuse ISM (see Mattila et al. 1996, A&A, 315,
L353). Anthracene Pyrene Benzopyrene Coronene In aromatic carbon ring molecules the
optically-active vibrational modes are various C-H and CC bending and stretching modes
which correspond reasonably well to the observed features. The 3.3µm feature is associated
with C-H stretching, the 6.2µm and 7.7µm bands are C-C stretching modes, and the other
bands are associated with various C-H in-plane and out-of-plane bending modes. Detailed
association is difficult because laboratory PAHs are expected to differ from those found in
interstellar space. Other suggestions for the carriers of these features are very tiny grains con-
sisting of hydrogenated amorphous carbon (HACs) or carbonaceous composites (sometimes
called QCCs, Q=Quenched), and solid carbon particles (“coal”).

While they are associated with PAH molecules, no single particular PAH “carrier” has been
positively identified for any of them. The matches between observations and laboratory
spectra are always close, but never close enough. This has led some researchers to suspect
that the PAH features arise from complex mixtures of different carriers (e.g., mixtures of
neutral and positively-charged PAHs as discussed by Alamandola, Hudgins, & Sanford 1999
ApJ, 511, L115). Proposals include free PAH molecules, PAH “clusters”, and particles
composed at least in part of PAHs. Other researchers have investigated what happens to the
spectra of various PAHs, HACs, etc. when they are “damaged” or “modified” by the harsh
radiation environment of interstellar space (e.g., ionization, addition or loss of hydrogen,
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etc.). Since such conditions cannot be easily reproduced in the laboratory (at least, nobody
has succeeded yet), this is hard to test. Detailed quantum mechanical calculations are
currently beyond our computational ability for such complex molecules. Further, the origin
of the PAHs remains unknown and a matter of considerable speculation.

One of the most important details about PAHs is that they flouresce in UV radiation.
Therefore, they are excellent tracers of high-mass stars (which emit in the UV of course).
And therefore, PAH emission has been used as a tracer of star formation itself.

X-Ray Absorption Edges: Dust grains can also absorb and scatter X-rays, although to
an X-ray photon, a dust grain looks like a dense cloud of atomic gas, with the energies of
the edges modified by being in solid materials rather than in the gas phase. Photoelectric
absorption edges have been seen for C, O, Fe, Mg, and Si with Chandra and XMM.

Continuous Emission: Two continuous emission components can arise from dust:
1. The “Extended Red Emission” (ERE), a broad featureless emission band peaking between
6100 Å and 8200 Å. In some nebulae this can contribution as much as 30-50% of the flux
in the photometric I band (centered at 8800 Å). It is almost certainly photoluminescence:
absorption of a UV or optical photon followed by re-emission. In some nebulae the conversion
efficiency can be as high as 10%. The most likely photoluminescent material is some kind of
carbonaceous material, but no conclusive identification with a particular carrier (PAH, tiny
silicate or carbonaceous grains, etc) has yet been made.
2. Thermal continuum radiation from dust grains. There are two forms:
a) FIR (> 60µm) continuum arising from warm normal-sized grains in thermal equilibrium
with the ambient radiation field (Td = 20 − 40 K). “Normal” size is > 0.01µm (100Å).
These include cooler “cirrus” emission (grains in equilibrium with the ISRF) and warmer
dust associated with star clusters, esp. in star formation regions.
b) 3-30µm continuum arising from non-equilibrium heating of tiny grains (sizes of 5-50Å)
to temperature of a few hundred to a few thousand K.

In general, the thermal emission is not well described by a blackbody radiation, but rather is
a blackbody spectrum modified by a wavelength-dependent emissivity. We will discuss this
in detail later. [End Pogge notes]

5.1.3 Polarization

Polarization of starlight was discovered serendipitously in 1949. The degree of polariza-
tion was found to be correlated with the amount of reddening, indicating that dust is the
polarizing agent.

The polarization percentage typically peaks near the V band, and can be described by the
“Serkowski Law”:

p(λ) ≈ pmaxe
−K ln2(λ/λmax) , (5.13)

with λmax ≈ 500 nm and K ≈ 1.15.

Light is linearly polarized by dust grains as it filters through dust clouds. Dust grains are
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Figure 5.3: Serkowski profile fit to data, normalized by pmax, from “UBV polarimetry of 361
A- and F-type stars in selected areas”, Reiz & Franco, ApJS, 130, 13, 140. λmax ≈ 0.5µm.

not spherical. They appear to be partially aligned such that their shortest axes are parallel
to the magnetic field. The largest polarization seems to be where the magnetic field is
perpendicular to the line of sight.

The alignment mechanism is not well understood, but we can use these observations to
understand dust grain sizes. Our clue is that the extinction rises into the UV (λ ≃ 0.1 nm),
but the polarization declines (see Serkowski equation). In the limit where the wavelength
is approximately the size of the grains (the (geometrical optics limit”), there should be no
polarization because the light will not “see” whether the grains are aligned or not. We
conclude that:
1) Extinction at 0.5µm has a contribution from non-spherical grains with radii of 0.1µm
that are aligned with the magnetic field. If this were not the case, the polarization would
continue into the UV.
2) Grains with size ≲ 0.05µm, which dominate the extinction at λ ≲ 0.4µm, are either
spherical (unlikely) or minimally aligned.

5.1.4 Scattered Starlight by Dust

A reflection nebula is created when a cloud happens to be near a bright star. We see
“emission” from the cloud that is actually scattered light from the nebula. We can tell this
is not from the cloud itself, because the spectrum looks stellar (has absorption lines, etc.)

We can use observations of scattering and an estimate of the intensity of starlight on the
cloud to estimate the albedo ω of the dust grains, and the scattering angle ⟨cos θ⟩ (both
defined later).

Astronomers have found that ω ≈ 0.5, or scattering is about as important as absorption,
and < cos θ >≈ 0.5. If ω = 1, the grain would be purely scattering. This implies that the
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Figure 5.4: Trifid nebula at optical wavelengths. The blue emission is scattered light from
hot OB stars.

grains are somewhat forward scattering.

Rayleigh scattering for particles small compared to the wavelength has ⟨cos θ⟩ ≈ 0, so the
particles dominating the scattering at 0.6µm must not be small compared to the wavelength
of light. They have a ≈ 0.1 nm.

5.1.5 The Size Distribution of Dust Grains

Polarization and scattering tell us that the sizes of dust grains must range from a ≈ 0.05µm,
to account for UV polarization decrement in the UV (Draine says 0.01µm here but polar-
ization arguments above said 0.05µm), to a ≈ 0.1µm (polarization and scattering results).

Consider this an introduction. We will revisit the size distribution later.

5.2 Scattering and Absorption by Small Particles [Draine

Chapter 22]

5.2.1 Cross Sections and Efficiencies

Let’s define new terms!
The absorption cross section is Cabs(λ)
The scattering cross section is Csca(λ)
The extinction cross section is Cext(λ) = Cabs(λ) + Csca(λ)
We can also define τ in terms of Cext: τλ = ndCextL, where nd is the dust number density
and L is the path length.
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The albedo

ω =
Csca

Cabs + Csca

=
Csca

Cext

(5.14)

A pure-scattering grain has ω = 1 (mirror), while pure absorbing grains have ω = 0 (black-
body).
The mean value of cos θ for scattered light

⟨cos θ⟩ = 1

Csca

∫ π

0

cos θ
dCsca(θ)

dΩ
2π sin θdθ . (5.15)

The radiation pressure cross section

Cpr(λ) = Cabs(λ) + (1− ⟨cos θ⟩)Csca(λ) . (5.16)

and finally the degree of polarization P (θ).

It is convenient to normalize the cross section terms by the dust grain volumes to make yet
more terms! Here, we use the effective radius of a sphere containing the same volume as the
dist grains, aeff . Remember, we had this earlier in the discussion of opacity.

Qsca =
Csca

πa2eff
(5.17)

Qabs =
Cabs

πa2eff
(5.18)

Qext = Qabs +Qsca (5.19)

aeff =

(
3V

4π

)1/3

(5.20)

[from Pogge] The index of refraction m has real and imaginary parts: m = n− ik. Introduc-
tory physics books only deal with the real part. The imaginary part deals with absorption.
If the real part is large, the grain is an effective scatterer. This is the case for dielectric or
icy grains. If the imaginary part is large, the grain is an effective absorber, as is the case for
metallic grains.

In the limit that there is no absorption, there is no imaginary part. Therefore, Qabs = 0 and
Qext = Qsca

[From Whittet, page 68] For dielectrics, k = 0 and

m = n ≃ c1 + c2λ
−2 , (5.21)

where c1 and c2 are constants. This is an empirically derived relation called the Cauchy
formula. In general c1 ≫ c2 so m is only weakly dependent on λ. Ices and silicates behave
approximately as dielectrics.

The way in which grains interact with light is determined by their size relative to the wave-
length of light. We can think of two limits:



150 CHAPTER 5. DUST

1) The dust grains are small compared to the wavelength. In this case, the light doesn’t
“see” the particles.
2) The dust grains are large compared to the wavelength.
We usually parametrize the size of the grains as

x =
2πa

λ
. (5.22)

5.2.2 Long wavelength case, x≫ 1 (“Electric dipole limit”):

We won’t go through the equations, but in the limit that the dust grain is much smaller
than the wavelength of light, a≪ λ, we can use the electric dipole approximation to get:

Qsca =
8

3
x4 |α|2 , (5.23)

where α is the electric polarizability of the grain,

α =
m2 − 1

m2 + 2
. (5.24)

[Draine uses ϵ =
√
m here for some reason. I don’t like that nomenclature.] Draine says

Csca =
8π

3

(
2πa

λ

)4

|α|2 . (5.25)

We see immediately that Qsca ∝ λ−4. This is Rayleigh scattering, which has a very strong
wavelength dependence (scatters short wavelengths much more efficiently than long wave-
lengths, where both “short” and “long” are large compared to the grain size). This is why
the sky is blue!

If there is absorption,
Qabs = −4x Im(α) (5.26)

or

Cabs =
4πa

x
Im(α) (5.27)

And therefore Qabs ∝ λ−1.

[Whittet pg 70] For pure dielectrics, m is real and almost constant with wavelength (see
equation above, c2 ≪ c1). In this case, Qsca ∝ λ−4 and Qabs = 0. More realistically, we can
expect Qsca ∝ λ−4 and Qabs ∝ λ−1.

Putting this all together, we see that at wavelengths large compared to the dust grain size,

Qext = Qsca +Qabs ∝ λ−4 + λ−1 ∝ λ−1 . (5.28)

This is the underlying extinction curve in the UV-to-NIR part of the EM spectrum. Neat!
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5.2.3 Short wavelength case of x ≃ 1 (Mie Theory)

When the dust grain sizes are comparable to the wavelength, we cannot use the electric
dipole approximation. We must find a solution to Maxwelll’s equations with an incident
plane wave, for an object of specified size and shape, composed of material with a dielectric
function ϵ or refractive index m. This was done by Mie (1908) and Debye (1909), and is
known as Mie theory.

We cannot assume that Qabs ≃ 0.

The actual solution is best done on a computer because analytically it is very complex. The
solution shows that the value of Qext depends on the refractive index (and therefore the
composition since there are real and imaginary parts related to scattering and absorption).
The general trend is for Qext to rise until it is approximately 3 to 5 when |m− 1|x ≈ 2. Qext

has oscillatory effect for weakly absorbing material.

For large grains, x → ∞ and all solutions have Qext → 2. This is called the “extinction
paradox”. Here’s why it’s weird:
As x → ∞, |m − 1|x → ∞ and the extinction cross section is exactly twice the geometric
cross section. We would expect them to be equal. This would mean that they are perfectly
efficient, κν = πa2nd. The discrepancy is due to the fact that diffraction around the target
leads to additional small angle scattering.

We can therefore define some regimes for Mie scattering:
Qabs, Qsca → 1 for λ≪ a. This is the “geometric limit.”
Qsca at maximum when x ≃ 1. Observations at wavelength λ see grains of size λ.
Qext, Qsca → 0 for λ≫ a

5.3 Emission from Dust Grains

Dust grains are heated by starlight and radiate in the IR. Some dust grains are “large” and
can be characterized by a single temperature. Some of the grains are “small” and are heated
“stochastically”.

[rest from Kwok 10.3] The densities in the ISM are frequently low, so the gas and dust are
typically “decoupled.” This means that the dust and gas temperature are not necessarily
the same. The gas temperature is the result of a balance between radiative and mechanical
heating and self-radiation. The temperatures of grains are primarily determined by radiative
processes: heating by diffuse starlight and cooling by self-radiation. Dust and gas tempera-
tures can be vastly different in the diffuse ISM. In the dense ISM they can be coupled.

We can use observations of dust to derive cloud masses instead of molecular line observations.
The uncertainty with molecular masses derived from CO can be large. Why? Can’t do H2

so observe CO, assume LTE (Tex = TK), assume optically thin so 12CO not great, assume
XCO and maybe 12CO to 13CO ratio. Assumptions with dust are different!
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Figure 5.5: Draine figure 22.1, 22.2, and 22.3 showing Qabs, Qsca, and Qext from Mie theory.
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Figure 5.6: Infrared emission per H nucleon from dust [Draine 21.6].

For observations of dust in a molecular cloud in the absence of background radiation, and if
τ ≪ 1,,

Iν = Bν(Td)(1− e−τ ) ≃ Bν(Td) τν , (5.29)

where Td is the dust temperature. If Td is uniform across the cloud,

Fν =

∫
Ω

IνdΩ ≃ Bν(Td)Ωτν . (5.30)

After plugging in our earlier definition for τν (Equation 5.8, and realizing the Qν earlier is
actually Qext)

τd =
nd

nH

πa2QextNH =
nd

nH

CextNH . (5.31)

this can be rewritten:

τd =
nd

nH

CextNH (5.32)

NH = τd/(
nd

nH

Cext) (5.33)

Fν = Bν(Td)Ωτd (5.34)

τd = Fν/(Bν(Td)Ω) (5.35)

NH = Fν/(
nd

nH

CextBν(Td)Ω) (5.36)

and finally

NH = R
Fν

2.8mHκνBν(Td)Ω
, (5.37)

where R is the gas-to-dust (mass) ratio, R ≡ ρg/ρd, the factor of 2.8 comes from the inclusion
of helium (see HW#1) and other heavy elements, and assumes molecular material, and we
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Figure 5.7: (left) Fits to SEDs from Anderson et al. (2012), showing different temperatures
and column densities for three dust clumps. (right) model dust emission from the DUSTEM
code (Compiegne et al., 2011).

have introduced a new term:

κ =
ndCext

ρd
. (5.38)

κ here is the mass absorption coefficient. DO NOT GET IT CONFUSED WITH THE
LINEAR ABSORPTION COEFFICIENT!!!! They are however related, since for the mass
absorption coefficient τν =

∫
κνρ ds, with ρ the mass density. We usually parametrize κ as

κν = κ0

(
ν

ν0

)β

, (5.39)

where β is determined through models of grains and κ0 is some fiducial value at ν0. In work
I have done I assumed β = 2, κ350µm = 7.3 cm2 g−1.

[How can we get temperature?] Two ways: “color temperature” from ratio of two fluxes, or
by fitting the entire SED. [How did we get temperatures for molecular gas?]

We can get cloud masses from the column density:

M = R
FνD

2

κνBν(Td)Ω
, (5.40)

where Fν is the flux in Jy, m = 2.8mH , the mean mass of a particle and D is the cloud
distance. This gives cloud masses! [What are our assumptions?] All molecular (probably
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fine), dust to gas ratio (large uncertainties), opacity law (huge uncertainties), temperature
can be fit for.

5.3.1 Observed spectral features of Dust

While dust doesn’t have spectral lines per se, it does have a number of features we can use
to discern its composition. Let’s go through these in order of decreasing strength.

The 2175 Å bump

The most conspicuous feature of the extinction curve is the 2175 Å bump (Figure 4 above).
The central wavelength of this feature is nearly identical along all sightlines, but its width
does change. It is seen in other galaxies (e.g., the LMC), as well as the Milky Way. It is
however nearly absent in the SMC. The bump “carrier” must be common in the ISM, but
not necessarily present in all galaxies.

Because the feature is strong, it must be made of abundant elements: H, C, O, Mg, Si, S,
or Fe. Draine says it must be C, but doesn’t give us a lot more to go on here. It also must
be long-lived and not easily destroyed.

[Whittet 3.5] Here is what we know observationally:
1) stars that sample the diffuse ISM tend to have relatively strong bumps
2) stars associated with H II regions have narrow bumps (Environment affects)
3) stars that sample dense clouds have broad bumps. (Environment affects)
4) the bump is generally uncorrelated with the FUV rise in extinction. From this we learn
that the FUV part of the extinction curve and the bump must be caused by different carriers.

The most likely carrier is graphite of partially graphitized carbon grains. Carbon is abundant
and graphite is not easily destroyed. In a lab, small carbon grains can match the location
and width of the bump.

In Draine (2011), he states rather conclusively that the bump carrier is actually PAHs (see
below). [Google draine PAHs review, second link]

Silicate features at 9.7 and 18 microns

The conspicuous absorption feature at 9.7µm is due to Si-O stretching. It is seen in emis-
sion and in absorption. Near 18µm there is another feature caused by Si-O-Si bending in
amorphous silicates. Whew! At least these fatures can be explained.

[Draine 23.4] Lending support to this identification, the 9.7µm and 18µm features are de-
tected in the outflows of oxygen rich atmospheres, but not in outflows from carbon stars.
Silicates should form around the oxygen rich stars, but not for carbon stars.

Laboratory attempts to recreate the silicate absorption features have shown that the material
cannot be crystalline. If it were, we would have sharper features, not at all like the braod
features we actually detect.
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Figure 5.8: IR extinction toward the Galactic center from Keper et al (2004) [Draine Figure
23.2]

The 3.4 micron feature

The 3.4µm feature is almost certainly due to the C-H stretching mode in hydrocarbons.
Whew! Another one solved.

Diffuse Interstellar Bands (DIBS)

Many many spectral features of the extinction curve are not yet identified. These are col-
lectively called the “Diffuse Interstellar Bands” (DIBs). Hobbs et al (2009) report 414 DIBs
between 3900 and 8100 Å. Draine is embarrassed that there is this wealth of data from the
DIBS that we currently are not using. Some of hte DIBS are correlated ith one another. but
for most nothing is known.

Polycyclic Aromatic Hydrocarbons

There is conspicuous emission in star-forming galaxies, predominantly at 3.3, 6.2, 7.7, 8.6,
11.3, 12.7, and 13.55µm. These are attributed to vibrational transitions of PAH molecules.
PAHs are large molecules or small grains, and have ≳ 50 atoms, predominantly carbon.
Their carbon is arranged into hexagonal planar rings, with H atached at the boundary. PAH
emission can account for up to 20% of the total infrared luminosity of a star forming galaxy!

The 3.3µm feature is from the C-H stretching mode (we had the 3.4µm C-H stretching
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mode earlier. [Offset caused by PAH structure?]). The 6.2 and 7.7µm features are from
vibrational modes of the carbon skeleton. The 8.6µm feature is from in-plane C-H bending,
and the 11.3, 12.0, 12.7, and 13.55µm flatures are due to out-of=-plane bending.

Real ISM PAHs will be more complicated than the simple picture. They can be ionized
producing PAH+ cations, collide with free electrons to produce PAH− anions, have N in
place of H, etc. Also, there will be a large size distribution of course.

Perhaps 10-15% of all interstellar C is in PAHs containing fewer than 500 C atoms. We
know it’s carbon again because planetary nebulae with high C/O ratios have stronger PAH
features. This is a similar line of reasoning as we used for the 9.7 and 18µm silicate features.

How do PAHs emit? They are small grains and so absorption of a single photon can quickly
spike their temperatures. The highest energy photons will destroy PAHs though. The PAHs
will absorb soft UV photons, immediately spike their temperatures to ∼ 1000K, then cool
via the various vibrational and bending modes. Usually called “flourescence,” which is just
re-emission of photons by solids on a short timescale (“phosphorescence” is a longer time
scale).

Figure 5.9: The 5 to 15µm spectrum of the reflection nebula NGC7023 (Cesarsky et al.,
1996 [Draine 23.7]
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Figure 5.10: 5.5 to 36.5µm spectra of the central regions of various galaxies. PAHs feature
prominantly [Draine Figure 23.8]

Dust Emission in the 20-500 micron Range

Earlier, we reviewed the dust emission peak near 100µm, which we ascribed to “big” dust
grains. These grains are ≳ 0.1µm in radius. The grains are large enough to be in thermal
equilibrium with their surroundings.

In massive star forming regions, there is also a second peak near 20 µm. This emission is
from small grains (sometimes called “very small grains”) perhaps 0.05µm in radius. More
on this in the next section.
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Figure 5.11: From Povich et al. (2007) stdy of M17. Shows PAH destruction.

5.4 Dust Composition [Draine Ch. 23]

We have some evidence for the dust grain size distribution, from the extinction curve, po-
larization, and scattering. [How can we learn about dust composition?]

1) Spectroscopy? This is what we did for gas, but, dust spectral features are too broad and
difficult to associate with any given composition.
2) Capture dust grains with a satellite. Can only do our Solar System of course, so may not
be representative of the ISM as a whole, and cannot probe different environments. Number
of grains captured is really low.
3) Figure out what elements are depleted in the ISM. We need a reference: the Sun or
meteorites. We have to assume that the ISM has basically the same composition as the
reference. This turns out to be the best method we have currently.

First we have to review abundances a little.

5.4.1 Abundances [Whittet Chapter 2]

We know that 98% of the Universe by mass is H, He. We of course are made of heavy
elements. When we observe clouds in the ISM in absorption, we find that they are under-
abundant in certain elements with respect to the Solar abundances (measured through Solar
absorption lines). This is known as depletion, can can be as high as a factor of 100. Deple-
tions tell us what material is locked up in grains. Variations in depletion with environment
tells us how dust grain chemistry proceeds in different environments. Let’s talk about how
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these elements get into the dust phase.

Origins of the elements

“Condensible” elements are those that can condense from the gas phase into the dust phase.

The Big Bang made ∼ 90% H, ∼ 10% He, and ∼ 0% “other” by number. These are
frequently denoted “X”, “Y”, and “Z,” where “Z” refers to “metals” or to “metallicity.”
Present day values of Z are ∼ 2%.

The first generation of stars are called “Population III,” and they presumably formed from
material with primordial abundances. Since metals are the main coolants of the ISM, [what
would this mean about their masses?] Big!!! Need more gravity to collapse.

As stars evolve, they create more and more metals. [Where does fusion take place?] In
their cores, and metals are locked up there. High mass stars (M > 8 M⊙) eventually de-
velop an iron core, with successive layers of Si, Ne, Mg, etc, like an onion. Low mass stars
(1 M⊙ < M < 8 M⊙) create elements up to oxygen. How is material returned to the ISM?
1) Mass loss from stellar winds, and
2) Supernovae (SNe), and
3) Planetary nebulae.

Stellar winds are much more massive for massive stars, but they are not enriched for massive
stars [Why not?] They are not fully convective. In stars like the Sun, the convective layer
goes ∼ 30% of the depth. The material is locked in their cores and remains there in WD
and NS. Low mass stars, however are fully convective and can return the elements made
through stellar nucleosynthesis in their cores into the ISM via stellar winds. This is only up
to oxygen though.

Figure 5.12: Convective and radiative zones in stars of various sizes [Wikipedia].

Low mass stars, however, do contribute significantly to the enrichment of the ISM when
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they evolve to become red giants, a phase called the asymptotic giant branch (AGB). In this
phase the stars have an inert core of C and O, with a He-burning shell and an H burning
shell. Temporal instabilities lead to photospheric enrichment by transporting C to the surface
(“dredge up ). O-rich stars produce silicate dust, while C-rich stars produce silicon carbide
and amorphous carbon.

[See here for brief review of AGB stars: https://www.noao.edu/outreach/press/pr03/sb0307.html]

As the star evolves through the AGB phase, it cools, expands, and grows in brightness,
burning its nuclear fuel faster and faster. For massive AGB stars larger than a few solar
masses, the star can cool to such an extent that dust begins to condense in the outer convec-
tive envelope. At the same time, the star can begin to pulsate with very large amplitudes.
As the star evolves, the pulsations become larger and longer. The large pulsation and dust
formation combine to drive a wind off of the surface of the star, which can quickly lift the
whole outer shell of hydrogen off, ending the hydrogen burning of the star. What is left over
is a dusty shell of hydrogen slowly expanding into space, and a very hot white dwarf in the
center - objects which we know of as a bipolar or planetary nebula. The nebula disperses
quickly, leaving an inert white dwarf which slowly cools.

SNe return elements back into the ISM. These elements can have masses up to Fe. Since
massive stars evolve fast, the enrichment happens basically immediately.

Pne also return elements back to the ISM (up to O). This process can take a long time
(10Gyr) for the Sun, and most of the elements will be permanently locked up into WD.

Solar System abundances

We have two ways of measuring SS abundances: from the Sun and from meteorites. We
would like to measure abundances from the Earth’s crust, but “gravitational fractionation”
and loss of volatiles has changed the abundances. Solar abundances should be the same
as when the Sun formed. The Sun is not fully convective and therefore its photospheric
composition should be unchanged. Meteorites are pristine. The ones we use for this work
are called “carbonaceous chondrites;” grains have been found in these meteorites that are
pre-Solar. We can measure meteoric abundances in the lab!

We find that the meteoric and Solar abundances match pretty well. Li and B are under-
abundant in the Sun because their are easily destroyed. The meteoric abundances are prob-
ably more correct. C,N,O (and H, not shown) are under-abundant because they tend to
remain in gas phase. The Solar abundances are probably more correct.

The total abundances are given in the plot below. The Li-group elements are easily destroyed.
The regular dips are due to the fact that elements are created by the addition of α-particles
(both in SNe and in stellar nucleosynthesis).
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Figure 5.13: AGB stars on the H-R diagram (top left), a cutaway of
their structure (top right), and a cutaway showing dust formation (bot-
tom). [https://www.noao.edu/outreach/press/pr03/sb0307.html top two and
http://aramis.obspm.fr/̃lebertre/LNP/agb lnp.html bottom]

Nomenclature

Abundances can be expressed relative to NH = 1012. For element X,

logA(X) = 12 + log

{
NX

NH

}
. (5.41)

The factor of 12 is just for conveneience since then A(X) is positive even for the rarest of
elements.
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Figure 5.14: Abundances derived from the Solar photosphere versus those from carbonaceous
chondrite meteorites. The line is 1:1.

Figure 5.15: Abundances derived from the Solar photosphere.

More commently, abundances are expressed relative to Solar:[
X

H

]
= log

{
NX

NH

}
− log

{
NX

NH

}
⊙

(5.42)

We frequently see [Fe/H], the metallicity of a star with respect to Solar. The Sun’s metallicity
is slightly higher than the average for main sequence stars, 0.2 dex, where “dex” means
logarithmic units. Underabundant stars with have negative values of [Fe/H] of course.

5.4.2 Abundance Constraints [Draine 23.1]

OK, enough background. We now have two lines of evidence: abundances from the Solar
System and abundances from the gas-phase of the ISM (spectroscopy). We see below that
C, Mg, Si, and Fe are underabuindany in the gas(“depleted”), with 2/3 of the C and 90%
or more of Mg, Si, and Fe. These elements must be in dust grains.
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Figure 5.16: Gas-phase abundances relative to Solar in the diffuse cloud toward ζ Oph [Draine
Fig. 23.1].

The “condensation temperature” in the figure is the temperature at which 50% of the element
would be incorperated into solid material in a gas of Solar abundances, at LTE at a pressure
p = 102 dyn cm−2. The condensation temperature indicates whether an element is able to
form stable solid compounds in gas of Solar composition. Elements with high condensation
temperatures are underabundant in the gas phase, presumably because the atoms are in
solid grains.

Draine lists the following materials formed from the depleted elements:
1) Silicates, e.g., pyroxene (MgxFe1−xSiO3) or olivine (Mg2xFe2−2xSiO4; 0 ≤ x ≤ 1)
2) Oxides of Si, Mg, and Fe (e.g., SiO2, MgO, Fe3O4)
3) Carbon solids (graphic, amorphous carbon, diamond)
4) Hydrocarbons (e.g., polycyclic aromatic hydrocarbons, PAHs)
5) Carbides, particularly silicon carbide (SiC) 6) Metallic Fe

There are of course other elements, but their abundances are low enough that they can be
ignored.
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5.5 A Model for Interstellar Dust [Draine 23.10]

We now have all the major components of dust identified. We can finally create a model for
ISM dust emission. It is worth noting that we cannot yet create a unique dust grain model,
as there are many models that can fit the data equally well.

Here is our ammo (mostly from Draine, 2011):
1) Starlight polarization: The extinction is polarization-dependent, requiring that some of
the grains be nonspherical and aligned with respect to the Galactic magnetic field.
2) Scattering of starlight: A substantial fraction of the observed extinction in the optical
is due to scattering, requiring that some of the grains must be large enough to efficiently
scatter optical light.
3) Abundance constraints: The grain model should incorporate elements only as allowed by
the total abundance of the element minus the fraction observed to be in the gas phase.
4) Infrared emission: The dust model should reproduce the IR emission spectra observed
from regions with different intensities of starlight heating the dust (various “spectral line”
features, black body emission near 100µm, etc).
5) X-Ray scattering: The dust composition and size distribution must be such as to repro-
duce the observed strength and angular distribution of X-ray scattering by interstellar dust.
6) Microwave emission: Dust-correlated microwave emission is attributed to rotational emis-
sion from very small dust grains (Draine & Lazarian 1998a,b). This constrains the abun-
dances of the smallest grains.
7) Dust in meteorites: Presolar grains with isotopic anomalies are found in meteorites. These
were part of the interstellar grain population 4.6 Gyr ago, when the solar system formed.

The most successful models have consisted of two materials:
1) Amorphous silicates, and
2) carbonaceous material.
The carbonaceous material must also contain PAHs. We will assume these two components
in the rest of our discussion of dust.

Mathis et al. showed that models with silicate and graphic spheres with a power-law size
distribution n(a) ∝ a−3.5, for amin < a < amax could reproduce the extinction curve. This is
called the Mathis-Rumpl-Nordsieck, or MRN, model. PAHs need to be added to the MRN
above model, either as a third component or as an extension of the carbonacious material
to smaller sizes.

5.6 Dust Grain Temperatures [Draine Chapter 24]

We can specify the energy content of dust grains with a temperature. Draine mentions that
this temperature definition is slightly problematic in the limit of small internal energies. It
is also a bit confusing when discussing stochastically heated grains, because individual grain
temperatures fluctuate wildly (see small grains discussion below).
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Dust grains absorb energy from the ISRF, or by collisions with molecules. [Why not grain-
grain collisions? Too infrequent.] In the diffuse ISM, it’s the ISRF that does the heating. In
dense clouds, inelastic grain-molecule collisions.

Dust grain temperatures depend on their sizes. We will break things down into “large”
grains with a ≳ 0.03 µm and “small grains” with a ≲ 0.03 µm. The large grains are the
ones responsible for the extinction in the optical.

Just like for molecules or atoms, when grains absorb photons they usually store that energy
by exciting an electron. They de-excite non-radiatively with the energy going into many
vibrational modes - i.e., heat. (Some small fraction will de-ecite radiatively, or will lose
electrons due to photoionization).

This is a different definition of temperature compared to atoms and molecules! For atoms
and molecules, the temperature is related to how fast they are moving. They have negligible
heat capacity.

Ignoring radiative de-excitation and photoionization, the heating energy gain is(
dE

dt

)
abs

=

∫
uν dν

dν
chνQabs(ν) πa

2 . (5.43)

Here uν dν is the number density of photons with frequencies in [ν, ν+dν], the photon energy
is hν, and the absorption cross section is Qabs(ν) πa

2 = κν/nd = Cabs. Different types of
grains of course have different values of Qabs [Draine Figure 24.1].

5.6.1 Radiative Heating

We can also define a spectrum averaged absorption cross section:

⟨Qabs⟩∗ =
∫
dν u∗,νQabs(ν)

u∗
, (5.44)

where u∗ =
∫
dν u∗,ν . The subscript here is a star because it is frequently starlight that is

doing the heating. The radiative heating rate then reduces to(
dE

dt

)
abs

= ⟨Qabs⟩∗ πa
2 u∗c . (5.45)

Draine Figure 24.2 shows that ⟨Qabs⟩ is a function of radius a for gaphicte and silicate grains,
and the spectrum of the ISRF. We can approximate the modeled absorption:

⟨Qabs,silicates⟩ ≈ 0.18(a/0.1µm)0.6 (5.46)

for silicate grains between 0.001 and 1µmin radius and

⟨Qabs,graphite⟩ ≈ 0.8(a/0.1µm)0.85 (5.47)

for graphite grains between 0.005 and 0.15µm in radius.
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Figure 5.17: [Draine 24.1]

5.6.2 Collisional Heating

Dust grains also can be heated via collisions with molecules. In this case Draine gives the
relevant expression for spherical grains:

(
dE

dt

)
gas

=
∑
i

ni

(
8kTgas
πmi

)1/2

πa2αi2k(Tgas − Td). (5.48)

The summation is over all different gas species.
The mean kinetic energy of thermal particles is 2kTgas. We would normally have 3/2kTgas,
but the more energetic particles collide more frequently. [Is this an exact expression then?]
We see that if the dust and gas temperatures are the same, no energy is transferred. Makes
sense!
The “accommodation coefficient” αi ranges from 0 to 1 and measures the degree of inelasticity
for collisions between particle i and a solid surface. We often do not know what value this
sholud take on. [Common trick in astronomy!] Perfectly inelastic collisions have αi = 0
where if the molecules and grains stick together it is 1. We have to assume it is ∼ 0.5
because we don’t really know the grain physics well enough.
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Figure 5.18: Absorption efficiency averaged over the ISFR spectrum of Mathis et al. (1983).
[Draine 24.2]

5.6.3 Collisional and Radiative heating

The ratio of the radiative and collisional heating rates tells us when one process is dominant.
For hydrogen:

(dE/dt)gas
(dE/dt)abs

=
3.8× 10−6

U

αH

⟨Qabs⟩∗

( nH

30 cm−3

)(
Tgas
102 K

)3/2

. (5.49)

For the CNM, what are typical values? nH ≈ 30 cm−3, Tgas ≈ 100. U is the dust-weighted
starlight intenisty relative to the local ISRF (U = 1 for the local ISFR). The ratio is ∼ 10−5

for the CNM, but much larger for dense dark clouds with smaller values of U.

5.6.4 Radiative Cooling

Dust grains cool via their infrared emission. We can think of them as blackbodies modified
by ⟨Qabs⟩: (

dE

dt

)
emiss.

=

∫
dν 4πBν(Td)Cabs(ν) = 4πa2 ⟨Qabs⟩Td

σT 4
d , (5.50)

where σ is the Stephan-Boltzmann constant and ⟨Qabs⟩ is the Planck-averaged eission effi-
ciency:

⟨Qabs⟩Td
=

∫
dν Bν(T )Qabs(ν)∫

dνBν(T )
. (5.51)
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Figure 5.19: Planck averaged emission efficiency divided by grain radius as a function of
grain temperature T. [Draine 24.3]

We can approximate Qabs(ν):

Qabs(ν) = Q0(ν/ν0)
β = Q0(λ/λ0)

−β . (5.52)

Remember, we had this before! When talking about dust emission, we had κ = κ0(ν/ν0)
β,

where κ is the mass absorption coefficint, which is linearly related to Qabs, thus the above.
Draine solves the above analytically. We can get approximate relations from realizing that
[Figure 24.1]

Qabs,silicates ≈ 1.4× 10−3

(
a

0.1µm

)(
λ

100µm

)−2

(5.53)

for silicates at wavelengths λ ≳ 20µm, and

Qabs,graphite ≈ 1.0× 10−3

(
a

0.1µm

)(
λ

100µm

)−2

(5.54)

for graphite at wavelengths λ ≳ 30µm. We can throw these into our Planck averages to get

⟨Qabs,silicates⟩ ≈ 1.3× 10−3

(
a

0.1µm

)(
T

K

)2

(5.55)

for silicates at wavelengths λ ≳ 20µm, and

⟨Qabs,graphite⟩ ≈ 1.0× 10−3

(
a

0.1µm

)(
T

K

)2

(5.56)
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From Draine Figure 24.3 we see that these agree with for T ≲ 102K (computed using actual
expressions and not approximations above of course).

5.6.5 Steady State Temperature

[Group Exercise! Compute the steady state temperature of a dust grain (planet, etc). As-
sume it emits isotropically. Eout ≃ 4πa2σT 4

ss. Ein ≃ L∗πa
2/(4πd2) ≃ πa2u∗c. [Energy

density has units of energy per volume per frequency, so u c is energy per area times time.
We don’t care about distance here since there are many sources of radiation.] For real grains
of course, we have to factor in the absorption efficiency:

4πa2σ ⟨Qabs⟩T 4
ss = πa2 ⟨Q∗⟩u∗c (5.57)

We can evaluate this equation with the solution for Qabs, assuming Qabs = Q0(λ/λ0)
−β. We

finally get the approximation

Tss,silicates ≈ 16.4(a/0.1µm)−1/15U1/6 K (5.58)

for silicates with 0.01 ≲ a ≲ 1µm and

Tss,graphite ≈ 22.3(a/0.1µm)−1/40U1/6 K (5.59)

for graphite with 0.005 ≲ a ≲ 0.15µm. Both of thes are for U ≲ 104.

We can see that larger radiation fields produce higher temperatures, although the relationship
is weak. Larger grains produce lower temperatures, but the relationship is almost non-
existent. We can assume that the largest grains all share the same temperature, regardless
of their size distribution.

5.6.6 Temperature spikes in very small dust grains

The temperature of the grains is a measurement of their internal energies. In the case of
very small grains, the absorption of a single photon will drastically change their energies
(temperature). This is another way of saying that small grains have a small heat capacity.
These grains do not really have a single representative temperature. This is called “stochastic
heating” and is most likely the cause of the 24µm emission seen in H II regions.

This concenpt naturally leads to the concept of a temperature distribution for each grain
type, dP/dT . The distribution in temperatures is obviously larger for smaller grains. For
large grains, we can actually just use a delta function centered at the steady state value.

5.6.7 IR emission from Dust grains revisited

I don’t know why Draine goes back to this topic, but we will follow his lead here.

In a typical spiral galaxy, perhaps 1/3 of the stellar energy is absorbed by dust grains and re-
emitted in the IR. This re-emission is a quantum process, but is can be nicely approximated
in a “thermal” approach.
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Figure 5.20: (left, right top) Temperature for carbonaceous grains. Fluctuations larger for
smaller grains. [Draine 24.5] (bottom) Temperature distribution function for carbonaceous
grains in ISRF with U = 1. P(0) is fraction in the ground state. [Draine 24.6]
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Figure 5.21: Spectra for model with silicates and graphites in various ISRFs, normalized by
U (from Draine & Li, 2007) [Draine 24.7]

The power per unit frequency radiated by a grain containing energy Eu is Pu = 4πBν(T )Cabs(ν)
and the emissivity is therefore

jν = Σi

∫
da

dni

da

∫
dT

(
dP

dT

)
i,a

Cabs(ν; i; a)Bν(T ) (5.60)

Calculations of jν need a model for the size distribution, the temperature distribution fun-
cion, and the absorption cross sections. Thes have been computed by Draine & Li (2007)

The PAH emission is relatively independent of the ISRF. PAHs cause more frequent tem-
perature spik,es, but the grains can cool efficiently between photons. Total energy output of
PAHs is increased, but spectrum shape is not.

The large grains do become warmer as the ISRF becomes larger.
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5.7 Dust Dynamics [Draine Chapter 26]

5.7.1 Radiation Pressure and Gravity [Whittet 7.3.1]

Radiation pressure can drive grains away from a star, while gravity works to keep them in
orbit. The outward force due to radiation pressure is

FRad = πa2 ⟨QRad⟩
(

L∗

4πd2c

)
, (5.61)

This makes a little sense, since the last terms are just the radiation pressure at distance d,
and pressure is just force/area. Here ⟨QRad⟩ is the average value with respect to wavelength.

The gravitaional force is just

Fgr =
GM∗md

d2
. (5.62)

Both of these have a d2 dependence, due to the inverse square law. When are they equal?

FRad

Fgr

=
a2 ⟨QRad⟩

(
L∗
4c

)
GM∗md

=
3L∗ ⟨QRad⟩
16πGM∗cas

, (5.63)

where we substituted the specific density s of the grain material with s = 3md/(4πa
3).

Evaluation of this shows that graphic is easily blown away from the star, while silicates are
less so. There is no dependence on this ratio with distance from the star.

This is important for AGB stars. We said earlier that dust grains are created by AGB stars.
This is how they are transported away from the photosphere, into the ISM.

5.7.2 Poynting-Robertson Effect

Consider a particle in a circular orbit with radius R and velocity vorb around a star with
luminosity L∗. Because of the aberration of starlight1, in the instantaneous rest frame of
the orbiting paricle, the radiative flux from the star has a component βL∗/(4πR

2) in the
direction antiparallel to the motion of the grain, where β = vorb/c. This radiation therefore
acts to reduce the orbital angular momentum J of the particle, causing the particle to spiral
in toward the star. This is called the Poynting-Robertson effect.

1From Wikipedia: http://en.wikipedia.org/wiki/Aberration of light : “Aberration may be explained as
the difference in angle of a beam of light in different inertial frames of reference. A common analogy is to the
apparent direction of falling rain: If rain is falling vertically in the frame of reference of a person standing
still, then to a person moving forwards the rain will appear to arrive at an angle, requiring the moving
observer to tilt their umbrella forwards. The faster the observer moves, the more tilt is needed. The net
effect is that light rays striking the moving observer from the sides in a stationary frame will come angled
from ahead in the moving observer’s frame. This effect is sometimes called the “searchlight” or “headlight”
effect.
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Draine works out the magnitude of this effect. In short, the grains experience a net loss of
angular angular momentum and the timescale for the orbit to decay is

τPR =
J

−(dJ/dt)PR
= 8.3× 107yr

(
ρ

3 g cm−3

)( a

cm

)(
R

AU

)
1

⟨QPR⟩∗
L⊙

L∗
, (5.64)

where ⟨QPR⟩ is the radiation pressire efficiency factor averaged over the stellar spectrum.
We expect QPR ≈ 1 for x = 2πa/λ ≳ 1. Draine mentions that the PR effect leads to orbital
decay on ≲ Gyr time scales for particles up to ∼ 10 cm in size. Micron-sized particles have
short orbital lifetimes near stars.

Wikipedia lists the force due to the PR effect as

FPR =
a2L⊙

4c2

√
GM⊙

d5
, (5.65)

which can easily be parameterized for other stars. It seems like this also contains the gravi-
tational force?

The combined effect of these three forces (gravity, radiation pressure, and the PR effect) is
that dust grains smaller than 0.1µm are pushed out of the Solar System, and those larger
tahn 0.1µm spiral in toward the Sun. These values will be slightly different depending on
the mass of the dust grain and the luminosity of the star, but the basics will be the same.

5.7.3 Rotational Motion

There has long been recognized to be extra emission in the ∼ 10 − 60GHz regime, with a
peak intensity near 30GHz. This emission cannot be accounted for by free-free, synchrotron,
thermal dust, or any other known emission mechanism. The accepted explanation is that this
emission is caused by spinning dust grains. These grains have a permanent dipole moment,
and therefore their rotation gives rise to emission, just like we saw for molecules.

From wikipedia: In astronomy, spinning dust is a mechanism proposed to explain anomalous
microwave emission from the Milky Way. The emission could arise from the electric dipole
of very rapidly spinning (10-60GHz) extremely small (nanometer) dust grains (Draine &
Lazarian 1998), most likely polycyclic aromatic hydrocarbons. The anomalous emission
was first discovered as a by-product of Cosmic Microwave Background observations which
make very sensitive measurements of the microwave sky which have to identify and remove
contamination from the galaxy.

Anomalous microwave emission was first seen as a surprising statistical correlation of mi-
crowave sky variations with far infrared (FIR) emission (Kogut et al. 1996, Leitch et al.
1997). This signal traced the warm galactic dust emission which was unexpected as the ex-
trapolated infrared dust signal to microwave frequencies should have been at least an order of
magnitude lower than that seen. Kogut et al. had correlated COBE Differential Microwave
Radiometer observations at centimeter wavelengths with DIRBE dust emission at 140 .m,
while Leitch et al. had correlated Owens Valley Radio Observatory ring observations at 14.5
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and 32 GHz with IRAS 100 .m. The suggestion at the time was the correlation was due to
free-free or Bremsstrahlung emission from ionized gas caused by young hot stars which are
formed in these dusty regions.

See AME in Planck data: http://arxiv.org/pdf/1309.1357v2.pdf

5.8 Review

We can review our knowledge of dust in a few figures:
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Figure 5.22: (Left) ISRF near the Sun (Draine 12.1). Spectral lines not included. Squares
show measurements. Dotted lines show constant photon occupation number nγ. (Right)
The same, for a harder radiation field [Draine 12.2].
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Figure 5.23: Same as Figure 5.22 (Draine 12.3), but near an O star with T = 3.5 × 104K.
Again, spectral lines not shown and dotted lines are constant nγ.

Figure 5.24: Infrared emission per H nucleon from dust [Draine 21.6].
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Chapter 6

Dynamics

6.1 Shocks! (Draine Ch. 35+36) and Magnetic Fields

Shocks are created when a flow moves faster than the local sound speed. What can do this?
–novae and supernovae
–fast stellar winds
–expanding H II regions
–gas falling into the potential of spiral arms
–colliding interstellar clouds

6.1.1 The Sound Speed

What is the sound speed? In an unmagnetized gas,

cs =

(
γP

ρ

)0.5

, (6.1)

where γ is the adiabatic index. γ takes values of γ = 5/3 for ideal monotonic gas, γ = 7/5
for diatomic gas. Partially ionized gas can take values between these two extremes, but fully
ionized gas has γ = 5/3. We almost always assume an ideal gas, so P = nkT and therefore

cs =

(
γkT

µmH

)0.5

, (6.2)

where µ is again the mean particle mass. Let’s compute cs for the various phases of the ISM!

For magnetized gas, we add in the magnetic pressure PB = B2/4π so

cms =

(
γP

ρ
+

B2

4πρ

)0.5

, (6.3)
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where cms is the magnetosonic speed.

The ratio of the speed of the flow to the speed of sound in the gas is the Mach number in
honor of Ernst Mach, a late 19th century physicist who studied gas dynamics. “Subsonic”
conditions occur for Mach numbers less than one, M < 1. As the speed of the object
approaches the speed of sound, the Mach number is nearly equal to one, M ≃ 1, and the
flow is said to be “transonic.” Supersonic conditions occur for Mach numbers greater than
one, M > 1. Sometimes, you may hear “hypersonic,” which is M > 5.

A shock separates M = 0 (the ambient medium) from M > 1. The shock dissipates heat,
and therefore due to the entropy generation it is irreversible.

6.2 The Fluid Equations

The ISM is a fluid, and so we must treat its physics using the fluid equations. Fluid mechan-
ics in the ISM have three main useful equations: the continuity equation, the momentum
equation, and the energy equation. These are collectively known as the “conservation equa-
tions,” or sometimes simply as the “fluid equations.” The names clue us in to the quantity
that is conserved. We will eventually add in a fourth equation from Maxwell’s Laws.

6.2.1 Mass Conservation

The (mass) continuity equation conserves mass. Assume we have some comoving volume
Ω(t). From mass conservation, ρΩ = constant. Therefore,

∂

∂t
(ρΩ) = ρ

∂Ω

∂t
+ Ω

∂ρ

∂t
= 0 . (6.4)

We can solve this to find
∂ρ

∂t
+∇ · (ρv⃗) = 0 . (6.5)

This equation is telling us that the change in density with time must be balanced by the
divergence in the quantity ρv⃗, which is the mass flux. Essentially, any change in density
must be balanced by a changing mass flow rate - either changing the flow speed or the flow
density.

6.2.2 Conservation of Momentum

The momentum equation conserves momentum, and is another way of stating F = ma.
Again, let’s consider only one dimension. What forces are acting on the fluid? First, there
are “body forces” that act at a distance: the electric, magnetic, and gravitational fields.
Second there are “surface forces:” the pressure acting on the surface and the shear force.

We can write ma⃗ as ρΩ ∂
∂t
v⃗ and then equate that to all forces in the system:

ρΩ
∂

∂t
v⃗ = F⃗pressure + F⃗EM + F⃗gravity + F⃗viscosity (6.6)
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The derivation of these terms can be fairly involved, but it’s all in Draine Ch.35. I want to
highlight one though.

If we have some surface element dS⃗ outward. Then, the external fluid presses inward so that
the net pressure on the fluid is

F⃗pressure =

∫
(−ρdS) =

∫
−∇ρdΩ , (6.7)

and by Gauss’s theorem,

F⃗pressure = −Ω∇P . (6.8)

For gravity,

F⃗gravity = (ρΩ)(−∇Φgravity) . (6.9)

This is Poisson’s law, albiet in a form that is probably a bit unfamiliar.

Putting it all together, after the derivation of F⃗EM, we find

ρ
Dv⃗

Dt
= −∇

(
P +

B2

8π

)
+

1

4π
(B⃗ · ∇)B⃗ − ρ∇Φgravity + x̂i

∂

∂xj
σij , (6.10)

where the term x̂i
∂

∂xj
σij is the viscosity, which we will ignore.

A simplified form of Equation 6.10 is the case when B⃗ = 0 and ∇Φgravity = 0. This is then
known as the “Navier-Stokes” equation.

6.2.3 Conservation of Energy

Conservation of energy is more complicated. The mechanical power or mechanical work
(dE/dt) is just the pressure times the change in volume. The change in volume is just
dV = dSv. Thus, we can integrate the momentum equation over the surface times v to find
the mechanical work.

There is also heating work, which is the difference of the heating Γ and the cooling Λ.

Draine derives the expression, but it’s ugly and doesn’t need to be reproduced here.

6.3 The Rankine-Huginot “Jump” Conditions

Now that we have our fluid equations, we can look at the physics of shocks. We are going
to be in the frame of the shock. Although the shock is propagating into the ISM, the shock
frame is stationary.

If there is a discontinuity (a shock) the mass, momentum, and energy must be conserved. We
can therefore set up pre- and post-sock conditions, called the “Rankine-Huginot” conditions.
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We are going to be making two simplifications: first, that the flow is “steady,” so that
∂/∂t = 0; second, that the shock is “plane-parallel” so that the flow is entirely in x̂ (∂/∂y =
∂/∂z = 0). Finally, we further assume that there is a “single species,” so the flow of all
particles has the same velocity.

6.3.1 Conservation of Mass

If the flow is constant or “steady,” ∂ρ/∂t = 0. If the flow is in one dimension, we can then
write:

ρv⃗ = constant . (6.11)

The mass flux is a conserved quantity.

6.3.2 Conservation of Momentum

We can integrate Equation 6.10 and simplify it using the mass conservation equation and
ignoring viscous forces to arrive at

ρv2x + P +
B2

y +B2
z

8π
= constant , (6.12)

where ρv2 is the “ram pressure,” or the pressure exerted by a flow and
B2

y+B2
z

8π
= 1

8π
B2

⊥ is the
magnetic pressure perpendicular to the flow.

6.3.3 Conservation of Energy

Ignoring viscosity again, the energy conservation equation reduces to[
ρv2

2
+

γP

(γ − 1)

]
vx +

B2
y +B2

z

8π
vx −

ByBx +BzBx

4π
vx − κ

dT

dx
= constant , (6.13)

where κdT
dx

refers to the heating and cooling.

In the case of Bx = 0 and κdT
dx

= 0 (no thermal conductivity), we find

ρv3

2
+

γP

(γ − 1)
v +

vB2

8π
= constant . (6.14)

6.3.4 Conservation of Magnetic Flux

Although not from a fluid equation, we must also conserve magnetic flux. Maxwell tells us
for infinite electrical conductance:

∂B⃗

∂t
= ∇× (v⃗ × B⃗) . (6.15)

If ∂/∂t = ∂/∂x = ∂/∂z = 0, and Bx = 0 ,

vB = constant (6.16)
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6.3.5 Solutions to the Jump Conditions

We can now put everything together to determine how our variables of interest change post-
shock. The quantity on the left hand side of the fluid equations must be the same pre and
post shock, so for instance a change in density must be compensated by a change in some
combination of velocity, pressure, or magnetic field strength. Let’s assume that we know or
can estimate the pre-shock quantities ρ1, P1, v1, and B1, where “1” refers to pre-shock gas
and we will use “2” for post-shock gas. We then have four equations and four unknowns.

We will follow the usual convention and replace vx with u, so in the shock reference frame
vs = u1. We can also define x ≡ ρ2/ρ1, so therefore from mass conservation u2 = vs/x and
from magnetic flux conservation B2 = xB1. The momentum and energy equations are then

ρ1v
2
2 + P1 +

B2
1

8π
=

ρ1v
2
2

x
+ P2 +

B2
1

8π
x2 (6.17)

1

2
ρ1v

3
s +

γ

γ − 1
P1vs +

B2
1

8π
vs =

1

2

ρ1v
3
s

x2
+

γ

γ − 1

P2vs
x

+
B2

1

8π
vsx (6.18)

One solution to these equations is the trivial one: ρ1 = ρ2, u1 = u2, P1 = P2, and B1 = B2.
But this is boring.

We can solve the modified momentum equation for P2 and substitute into the modified
energy equation to eventually get a quadratic in x. Draine lists the solution then as

x =
2(γ + 1)

D +
√
D2 + 4(γ + 1)(2− γ)M−2

A

, (6.19)

where

D ≡ (γ − 1) + 2M−2 + γM−2
A (6.20)

M ≡ vs√
γP1/ρ1

(6.21)

MA ≡ vs
B1/

√
4πρ1

. (6.22)

M is again the Mach number and MA is the Alfven Mach number.

For a shock to exist, it must be supersonic, so vs > cms (Equation 6.3). We can then define
yet another Mach number:

M ≡ vs/cms , (6.23)

and this is the one that matters for a magnetized medium.

These equations don’t reduce to a nice form unless we have a “strong shock:” M ≫ 1. In
this case, D → (γ − 1), so

x→ γ + 1

γ − 1
= 4 for γ = 5/3 . (6.24)
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Figure 6.1: Draine figure 36.1 showing the structure of a nonmagnetic radiative shock with
M = 4. Our treatment so far has only concerned positions 1 and 2.

It also follows that

u2 →
γ − 1

γ + 1
vs =

1

4
vs for γ = 5/3 . (6.25)

If we then solve for the pressure P2 and assume the ideal gas law T2 = P2µ/ρ2k, then

T2 →
2(γ − 1)

(γ + 1)

µv2s
k

=
3

16

µv2s
k

for γ = 5/3 . (6.26)

Draine provides handy values for T2:

T2 ≈ 2890K

(
µ

1.273mH

)( vs
10 km s−1

)2

(6.27)

T2 ≈ 1.38× 107K

(
µ

0.609mH

)( vs
1000 km s−1

)2

, (6.28)

where µ = 1.273mH for H I and µ = 0.609mH for fully ionized gas.

We can see these effects graphically in Draine Figure 36.1, for an unmagnetized flow.

6.4 Magnetic fields

We hate magnetic fields, because they are difficult to measure and mess up all of our nice
equations. Unfortunately, they can be very important in dynamic processes, as we saw in
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the preceding discussion of shocks.

Magnetic fields pervade all size scales in astrophysics. They are especially important in
dynamic processes, since they add pressure that (generally) resists gravitational contraction.
In cgs, this pressure, or energy density, is

PB =
B2

8π
(6.29)

Draine lists that for a median Galactic magnetic field strength of 6.0µG (Heiles & Crutcher,
2005), the magnetic energy density is 0.89 eV cm−3. Magnetic fields therefore have a higher
energy density than almost anything else averaged over the entire Galaxy (Draine Table 1.5).

Magnetic fields essentially do not interact with neutral gas, although as we learned in the
chapter on dust there can be small effects. Neutral gas that is pervaded by a strong magnetic
field will act the same as if there is no strong magnetic field. Plasmas will feel an additional
force along the field lines. They are most important for charged particles. They can, however,
still have notiable effects on neutral gases with small ionized components. Luckily (or not!),
most astrophysical systems have enough ionization to “freeze” the magnetic field to the
plasma. This ionization is maintained by UV photons in the diffuse ISM, and by cosmic rays
in denser clouds. If the plasma moves, it carries the magnetic field with it, which is called
“advection.”

An important quantity for magnetic fields is the “plasma beta,” which tells you the ratio of
turbulent to magnetic energy densities (pressures):

β =
8πnkT

B2
. (6.30)

In high-β environments, thermal energy dominates. In low-β environments, magnetic energy
dominates.

https://arxiv.org/pdf/1001.5230v2.pdf

6.4.1 Observations of magnetic fields

Magnetic fields are notoriously difficult to measure, and furthermore such measurements
never give you the total magnetic field, typically only the line of sight component. Despite
being dynamically important, researchers often try to ignore magnetic fields because of our
ignorance of their strenghts.

Magnetic field observations in most cases (all?) require observations of polarized light. If
the observations are done in full Stokes, we get I,Q, U, V (hopefully you covered this in
the radio astronomy course). We can get the direction of linearly polarized emission from
Q = I cos(2ψ) and U = I sin(2ψ). The linearly polarized intensity is PI =

√
Q2 + U2.

[From Cal. Tech course http://www.its.caltech.edu/∼kamion/Ay126/Bfields.pdf
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Figure 6.2: The total radio continuum emission from the “whirlpool” galaxy M51 (distance
estimates range between 13 and 30 million light years) is strongest at the inner edges of the
optical spiral arms, probably due to the compression of magnetic fields by density waves.
The vectors give the orientations of the regular magnetic fields as derived from the polarized
emission. The field lines follow nicely the optical spiral arms. Unexpectedly, strong polarized
emission is observed also between the optical arms which indicates the action of a dynamo.
This image was observed with the VLA in its most compact configuration at 6cm radio
wavelength (broadband continuum). As the VLA cannot detect the diffuse, large-scale radio
emission, data from the Effelsberg 100-m telescope in Germany at the same wavelength
was added. Investigator(s): Rainer Beck (MPIfR Bonn, Germany), Cathy Horellou (Onsala
Space Observatory). http://images.nrao.edu/336

Faraday rotation

As we saw previously, plasmas have a frequency-dependent index of refraction. The speeds of
electromagnetic waves that propagate through that plasma thus have a frequency-dependent
group velocity. If there is a source (e.g., a pulsar) that emits pulsed radiation, then the arrival
times of those pulses will depend on the frequency (and the time delay depends on ν−2, where
ν is the frequency). Measurement of these time delays can be used to infer the dispersion
measure.

If the plasma is magnetized, then there is an additional effect that acts on the polarization
of the electromagnetic wave. The Faraday rotation effect appears during the propagation of
electromagnetic waves in a magnetized plasma. A linearly polarized wave can be decomposed
into opposite-handed circularly polarized components. The right-handed and left-handed
circularly polarized waves propagate with different phase velocities within the magneto-ionic
material. This effectively rotates the plane of polarization of the electromagnetic wave.

Suppose there is a magnetic field in the plasma directed along the line of sight. Electrons
will then spiral in one particular direction around this magnetic field, and so the indexes
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of refraction for right- and left-circularly polarized electromagnetic waves will differ. The
propagation speeds for right- and left-circularly polarized waves will therefore differ slightly.
Recalling that a linearly-polarized wave is a superposition of two circularly-polarized waves,
the linearly-polarized wave will undergo something like a beat phenomenon that occurs when
two waves of slightly different frequencies are superposed. What this results in is a rotation
of the linear polarization of a linearly polarized EM wave by an angle, Ψ = RMλ2, where λ
is the wavelength and

RM =
1

2π

e3

m2
ec

4

∫ L

0

neB∥dL (6.31)

If the DM and RM are both measured, after evaluating the constants the electron-density-
weighted mean line-of-sight magnetic field is

⟨B∥⟩ =
RM

8.12× 10−5rad cm−2

cm−3 pc

DM
µG . (6.32)

This can be measured along many different lines of sight, and also to pulsars at different
distances along similar lines of sight, to get information about the three-dimensional magnetic
field. Measurements indicate magnetic fields B ∼ 2 − 4µG in the spiral arms and slightly
smaller in the interarm regions, with a sign flip between arm and interarm (note that 6µG
listed previously).

We usually measure differences in Ψ to determine the rotation measure:

RM =
Ψ2 −Ψ1

λ21 − λ21
(6.33)

This shows the π-ambiguity from two wavelengths alone. With more wavelengths, we can
resolve this ambiguity.

Synchrotron radiation

We learned before that the strength of synchrotron radiation depends on the magnetic field
strength. We had that the source function is:

Sν =
jν
κν

∝ B−1/2ν5/2 . (6.34)
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At low frequencies, the synchrotron radiation is optically thick, and Iν ∝ Sν ∝ B−1/2ν5/2.
At high frequencies, the intensity will be proportional to the emissivity coefficient: Iν ∝ jν ∝
ν−(γ−1)/2 ∝ ν−0.7. Note that I have switched our electron spectral index symbol from the p
used earlier to γ, because we need p to define polarization below.

Synchotron radiation is also polarized if the magnetic fields are coherent. If the magnetic
field is homogeneous, then the polarization is p = (γ + 1)/(γ + 7/3) ≃ 0.73. Observations
show p = 0.1− 0.2, typically, a consequence of incoherence or Faraday depolarization, beam
effects, etc. Still, the variation of the polarization across the sky can be used to infer a
magnetic-field pattern in the Galaxy.

Zeeman splitting

A magnetic field splits the electronic energy states of the same l into 2l + 1 energy levels
split by energies ∼ µBB ≃ 5.78 × 10−15 (B/µG) eV, where µB = eℏ/2mec is the Bohr
magneton. Magnetic fields of strength 1 − 100µG give rise to level splittings that are too
small to be detected in sub-mm or shortward (hν ≳ 10−4 eV). The splitting in the 21-cm
line (hν = 5.9 × 10−6 eV) is split by ∼ 10−8 for a 10µG field. This is smaller than the
v/c ≃ 10−5 frequency shifts from velocity broadening in molecular clouds or the IGM and
thus unobservable.

However, Zeeman splitting gives rise to a difference in the frequencies of the two circular
polarizations of the transition radiation, and these can be detected and have been used
to measure magnetic-field strengths in H I and molecular regions in the ISM. Diffuse clouds
studied in 21-cm absorption this way have been found to have B ≃ 6µG implying a magnetic
pressure several times larger than the gas pressure. Thus, magnetic fields may be dynamically
important in H I regions.

After Dick Crutcher, Zeeman diagrams are callsed “Crutcher diagrams.” They show that
in low density ionized gas (including partially ionized H I), there is no relationship between
magnetic field strength and the density. For molecular clouds, there is a linear relationship.
This shows that as clouds collapse, the field is advected. Therefore, the field strength and
density increase together. The Zeeman effect is line of sight B-field, so the points generally
fal under the curves.

Polarization of starlight

Evidence that polarization of starlight was due to interstellar dust came from (a) the correla-
tion between the magnitude of the polarization and the reddening, and (b) the coherence in
the polarization between different stars in the same region of the sky. We know from before
that in most cases the polarization percentage peaks near the B band (5500 Å) and follows
the empirical Serkowski law,

p(λ) ≈ pmaxe
−K ln2(λ/λmax) , (6.35)

with λmax ≈ 500 nm and K ≈ 1.15.



6.4. MAGNETIC FIELDS 189

Figure 6.3: Zeemann profile (top) and Crutcher diagram (bottom).
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Heuristically, the polarization arises if dust grains are elongated and somehow aligned. If
so, then the absorption of light polarized along the long axis may differ from that along the
short axis. The dust grains appear to be aligned by the interstellar magnetic field with their
shortest axes parallel to the magnetic field; the mechanism is not well understood and is
a subject of active current research. Since extinction increases toward the UV, while the
polarization decreases, it suggests that the grains responsible for the polarization have radii
a ≃ 2(λmax/2π) ≃ 0.1µm. In the UV, one moves to the geometric-optics limit, and both
polarizations are absorbed similarly. Thus, the V band extinction must be due largely to
a ≃ 0.1µm grains, and these grains must be nonspherical and aligned with the magnetic
field; and grains with a ≲ 0.05µm, which dominate the exinction at λ ≲ 0.3µm are either
spherical (which seems unlikely) or minimally aligned.

6.5 Supernovae and the Three-Phase ISM

Supernovae (SNe) are super explosions of super stars at the end of their lifetimes. They are
one of the most energetic phenomenae in the Universe, and have a large impact on driving
turbulence in the ISM. They are believed to be responsible for the acceleration of Galactic
cosmic rays and the creation of the HIM.

As a review: SN Type Ia are from white dwarf accretion past the Chadrasehkar limit of
∼ 1.4 M⊙. All other SN are from core-collapse, including the famous SN 1987A in the LMC.

Videos of SN1987A:
https://www.youtube.com/watch?v=g12g2Nq3 2I
https://www.youtube.com/watch?v=8Q5iXlJz9JU

A typical SN has an energy of E0 = 1051 erg (E51 = 1), although some Type II SNe have E0 =
1052 erg. The ejected mass (Mej) ranges from ∼ 1.4 M⊙ for Type I SNe, and ∼ 10− 20 M⊙
for Type II SNe.

We can understand SNe in terms of some very simple physics, and break things into three
distinct phases: free expansion,

6.5.1 Phase I: Free Expansion

The first phase of expansion, the expansion energy is significantly greater than the energy
contained in the local medium. For type II supernovae, the expansion initially moves into
the exterior parts of the star.

Let’s compare the ejecta energy with that of the explosion itself to see how fast this phase
is propagating into the ISM:

〈
v2ej

〉
=

(
2E0

Mej

)1/2

= 1.00× 104 km s−1 E
1/2
51

(
M⊙

Mej

)1/2

. (6.36)
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Figure 6.4: Crab nebula in the optical, diagram of blas wave and reverse shock, Tycho’s
SNR at X-ray wavelengths.

This is obviously much greater than the local sound speed of a few km s−1, which leads to
a fast shock expanding into the ISM. Interior to the shock is the supernova remnant (SNR).
As long as the material swept up by the shock is much less than the mass of the stellar
ejecta, the expansion of the stellar ejecta proceeds at essentially a constant velocity equal to
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the initial shock wave speed, typically of the order of 10,000 km s−1. This is known as the
“free expansion” phase and may last for approximately 200 years, at which point the shock
wave has swept up as much interstellar material as the initial stellar ejecta. The supernova
remnant at this time will be about 3 pc in radius.

Although the remnant is radiating thermal X-ray and synchrotron radiation across a broad
range of the electromagnetic spectrum (from radio to X-rays), the initial energy of the shock
wave will have diminished very little. Line emission from the radioactive isotopes generated
in the supernovae contribute significantly to the total apparent brightness of the remnant in
the early years, but do not significantly affect the shock wave.

6.5.2 Phase II: Sedov-Taylor: The BlastwaveTM

As the remnant sweeps up ambient mass equal to the mass of the stellar ejecta, the wave will
begin to slow and the remnant enters a phase known as adiabatic expansion, or the Sedov-
Taylor or blast wave phase. The internal energy of the shock continues to be very large
compared to radiation losses from thermal and synchrotron radiation, so the total energy
remains nearly constant. The rate of expansion is determined solely the initial energy of the
shock wave and the density of the interstellar medium.

As the density of the expanding ejecta drops (as T−3), the pressure of the shocked gas behind
the shock wave soon exceeds the thermal pressure in the ejecta. Because of this pressure
difference, a reverse shock is created. There are now two shock fronts. The original one
propagating outward is called the “blastwave” and the reverse shock propagating inward.
The reverse shock re-heats the material in the SNR. [For the interested reader: Can we
compute when the reverse shock is created?]

As the ejecta expand out from the star, it passes through the surrounding interstellar
medium, heating it from 107 to 108 K, sufficient to separate electrons from their atoms
and to generate thermal X-rays. The interstellar material is accelerated by the shock wave
and will be propelled away from the supernova site at somewhat less than the shock wave’s
initial velocity. This makes for a thin expanding shell around the supernova site encasing a
relatively low density interior.
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This occurs at radius:

R1 =

(
3Mej

4πρ0

)1/3

, (6.37)

when

t1 ≈
R1

⟨v2ej⟩1/2
= 186 yr

(
Mej

M⊙

)5/6

E
−1/2
51 n

−1/3
0 (6.38)

For t ≥ t1, the reverse shock has already reached the center of the SNR, and the entire
SNR is hot. The remnant is still expanding due to the large pressure difference between the
ISM and the SNR. It is emitting, but this radiation is not cooling the remnant significantly
because the densities are low.

We can now approximate the expansion as a “point explosion” injecting energy E0 into the
uniform density ISM. We can neglect the finite mass of the ejecta (which is dwarfed by the
mass of the swept up material), the radiative losses of energy (which are small compared to
the energy of the system), and the pressure in the ambient medium (small compared to that
in the SNR).

Here Draine switches to a strange dimensional analysis method to arrive at a classic result.
We know that the shock radius Rs will expand at a rate dependent on the SN energy and
the mass of the ISM:

Rs = AEαρβtη , (6.39)

where the explosion occurs at t = 0. From dimensional analysis:

Mass : 0 = α + β (6.40)

Length : 1 = 2α = 3β (6.41)

Time : 0 = −2α + η . (6.42)

The mass condition arises because energy and mass must be proportional. To get length
out, their exponents must differ only by a sign. The length condition arises because energy
has in its units length−2 and density as length−3; if α = −1, β = 1 to get length out of the
“equation.” Similarly, for the third condition, energy has in its units time−2, so if α = 1,
η = 2.

This leaves us with three equations and three unknowns. We can easily solve these to get
α = 1/5, β = −1/5, η = 2/5:

Rs = A

(
Et2

ρ0

)1/5

, (6.43)

where A = 1.15 from the exact solution. Neat! We can therefore rewrite our expansion
terms, after realizing that v2 ∝ T :

Rs = 1.52× 1019 cmE
1/5
51 n

−1/5
0 t

2/5
3 (6.44)

vs = 1950 km s−1E
1/5
51 n

−1/5
0 t

−3/5
3 (6.45)

Ts = 5.25× 107 KE
2/5
51 n

−2/5
0 t

−6/5
3 , (6.46)
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Figure 6.5: Sedov-Taylor expansion for γ = 5/3 [Draine 39.1].

Or, the radius grows slowly with time, the shock velocity decreases slowly with time, and
the temperature decreases with time.

Draine shows the formal Sedov-Tailer solution.

Draine mentions that the Sedov-Taylor solution is not too bad, although it does neglect some
dynamical effects.

6.5.3 Phase III: Snowplow phase: Escape from Sedov-Taylor: The
Reckoning: The Radiative Phase

[When does the Sedov-Taylor expansion phase end?] When radiative cooling becomes im-
portant. When temperatures cool to about 20, 000 K, ions and electrons begin recombining,
the SNR leaves the Sedov-Taylor expansion phase.

This is probably a good time to talk about the radiation. The SNR is ∼ 107K. How does
it radiate? X-rays and synchrotron primarily. Why not free-free? Well, there is free-free as
well, but the synchrotron emission is much stronger.

After the temperature cools, the hot recombined electrons emit UV line radiation. This
is much more efficient at cooling the remnant. For a cooling function Λ that has units of
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erg s−1 cm−3, this gives
dE

dt
= −

∫ Rs

0

Λ4πr2 dr (6.47)

Draine mentions a functional form for Λ that leads to:

trad = 49.3× 103 yrE0.22
51 n−0.55

0 (6.48)

Rrad = 7.32× 1019 cmE0.29
51 (6.49)

When t ≈ trad, the thermal pressure behind the shock has dropped significantly due to
cooling. We call this the snowplow phase. There is now a dense shell of cool gas that is
enclosing a hot central volume. The snowplow here refers to the fact that the dense shell
mass is added to as the blastwave progresses outward.

The gas here is just cooling by adiabatic expansion. Adiabatic here just means that the gas
does not transfer heat to its surroundings (via radiation). Hence this new phase is known
as the radiative phase during which X-ray radiation becomes much less apparent and the
remnant cools and disperses into the surrounding medium over the course of the next 10000
years.

At the beginning of the snowplow phase, Draine notes that the shock speed is ∼ 150 km s−1.

Draine gives the relevant expressions for the snowplow phase:

Rs ≈ Rs(trad)

(
t

trad

)2/7

(6.50)

vs ≈
2

7

Rs

trad

(
t

trad

)−5/7

(6.51)

6.5.4 Phase IV: Fadeaway

The shock speed declines with time until it becomes just an ordinary sound wave. Using our
previous expressions, this occurs when

tfade ≈
(
(2/7)Rrad/trad

cs

)7/5

trad ≈ 1.87× 106 yr E0.32
51 n−0.37

0

( cs
10 km s−1

)−7/5

(6.52)

Rfade ≈ 2.07× 1020 cmE0.32
51 n−0.37

0

( cs
10 km s−1

)−2/5

(6.53)

Why does this happen? Internal pressure is not greater than external pressure. The SN
could run into a dense structure, or radiative cooling may dominate.

6.5.5 Why would we care about this?

McKee & Ostriker (1977), in a classic paper, argued that blastwaves from SNe have a large
impact on shaping the ISM. The envisioned an ISM consisting primarily of the CNM and
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the HIM. The WNM and WIM are restricted to the interface regions of the neutral clouds,
and the WIM in direct contact with the HIM and photoionized by thermal emission from it.
A blastwave propagates into these media.

The authors view the ISM as being composed of numerous small (spherical!) clouds of
molecular gas, embedded in a diffuse hot ISM (HIM). Each cloud has an ionized halo (the
WIM) maintained by the interstellar UV background. Between the ionized halo and the
cloud itself, they suggest the presence of a neutral zone heated by interstellar X-rays.

It turns out this isn’t really correct in detail, but nonetheless provides a useful framework.

6.6 Star Formation [Draine Chapter 41]

Stars have to form somehow, because stars exist. The formation of stars must involve collapse
of a molecular cloud. These clouds have mean densities of ∼ 103 cm−3 or so, and sizes of
about a parsec (∼ 1018 cm). They must collapse down to ∼ 1011 cm (the size of a star), with
densities of ∼ 1024 cm−3 (the mean density of a star).

When does this collapse occur? When gravity overcomes pressure. The condition where
gravity and pressure are in balance is of course called “hydrostatic equilibrium.” One treat-
ment says that a cloud not in hydrostatic equilibrium that will collapse has a characteristic
size of the “Jeans radius” and mass of the “Jeans Mass” (the condition of instability is the
“Jeans Instability”). We will derive these quantities first from the hydrostatic equilibrium
condition. We can also use the Virial theorem, and the equations of fluid mechanics (in
Draine). All three derivations are important, and we’ll do them all in turn.

6.6.1 Jeans Mass from Hydrostatic Equilibrium [FollowingWikipedia
page]

The Jeans mass is named after the British physicist Sir James Jeans, who considered the
process of gravitational collapse within a gaseous cloud. He was able to show that, under
appropriate conditions, a cloud, or part of one, would become unstable and begin to collapse
when it lacked sufficient gaseous pressure support to balance the force of gravity. The cloud
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is stable for sufficiently small mass (at a given temperature and radius), but once this critical
mass is exceeded, it will begin a process of runaway contraction until some other force can
impede the collapse. He derived a formula for calculating this critical mass as a function of
its density and temperature. The greater the mass of the cloud, the smaller its size, and the
colder its temperature, the less stable it will be against gravitational collapse.

Hydrostatic equilibrium is:
dp

dr
= −Gρ(r)Menc(r)

r2
, (6.54)

where Menc(r) is the enclosed mass, p is the pressure, ρ(r) is the density of the gas at r, G is
the gravitational constant and r is the radius. The equilibrium is stable if small perturbations
are damped and unstable if they are amplified. In general, the cloud is unstable if it is either
very massive at a given temperature or very cool at a given mass for gravity to overcome
the gas pressure.

Let’s say we have a spherical molecular cloud cloud of radius R, mass M , and sound speed
cs. Compression of this region can only proceed at approximately the sound speed, which
gives a characteristic time of:

tsound =
R

cs
(6.55)

for sound waves to cross the region. Gravity will attempt to contract the system even further,
and will do so on a free-fall time,

tff =

√
3π

32Gρ
. (6.56)

(This is sometimes given as tff =
√

3
2πGρ

, from a simpler treatment.) It is important to

remember that t ≈ (Gρ)−1/2 is the characteristic time for many processes in astrophysics.
This is a good starting guess for many time scales.) We have collapse when tff < tsound. In
this case, the collapse is fast enough that the cloud cannot re-establish equilibrium, which
takes place over the timescale given by the sound speed.

It is worth here taking a slight detour to describe how long these free fall times are. For
large scales, the growth time for the Jeans instability is

τJ ≃ 2.3× 104yr

(
106 cm−3

nH

)1/2

(6.57)

For nH = 1000 cm−3, this is about 0.7Myr. Free fall time (collapse timescale for a pressure-
less gas) is:

τff =

(
3π

32Gρ0

)1/2

= 4.4× 104 yr

(
106 cm−3

nH

)1/2

(6.58)

For nH = 1000 cm−3 this is 1.4Myr - slightly longer than growth time.

OK, back to the Jeans mass and radius. The resultant Jeans radius RJ is therefore:

λJ ≃ cs√
Gρ

(6.59)
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The speed of sound is

cs =

√
γP

ρ
, (6.60)

where γ is the adiabatic index, which is 7/5 for molecular gas and 5/3 for monotonic gas.
The pressure P = nkT = ρ/µkT assuming an ideal gas, with mean molecular mass µ, so we
have

RJ ≃

√
kT

Gµρ
. (6.61)

The real definition gives a factor of order unity out front:

RJ ≃

√
15kT

4πGµρ
≃ (0.4 pc)

(
cs

0.2 km s−1

)( n

103 cm−3

)−1/2

. (6.62)

All scales larger than the Jeans length are unstable to gravitational collapse, whereas smaller
scales are stable.

Perhaps the easiest way to conceptualize Jeans Length is in terms of a close approximation,
in which we rephrase ρ as M/r3. The formula for Jeans’ Length then becomes:

RJ ≈

√
kBTr3

GMµ
, (6.63)

and therefore RJ = r when kT = GMµ
r

. In other words, the cloud’s radius is the Jeans
Length when thermal energy per particle equals gravitational work per particle. At this
critical length the cloud neither expands nor contracts. It is only when thermal energy is not
equal to gravitational work that the cloud either expands and cools or contracts and warms,
a process that continues until equilibrium is reached.

We can recast this in terms of the “Jeans mass”:

MJ =

(
4π

3

)
ρR3

J =

(
5kT

Gµ

)3/2(
3

4πρ

)1/2

≃ (2 M⊙)

(
cs

0.2 km s−1

)3 ( n

103 cm−3

)−1/2

.

(6.64)
The Jeans mass MJ is just the mass contained in a sphere of radius RJ . It is useful to
remember that MJ ∝ T 3/2ρ−1/2. Thus, stars can form most efficiently (when mass is low) in
low temperature, high density locations where the Jeans mass is not as great.

The above is an illustrative and wrong derivation! Jeans assumed that the collapsing region
of the cloud was surrounded by an infinite, static medium. The pressure in hydrostatic
equilibrium is therefore less than that required, and the mass is therefore too high. We will
fix this problem below.

A larger issue is that because all scales greater than the Jeans length are also unstable to
collapse, any initially static medium surrounding a collapsing region will in fact also be
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collapsing. As a result, the growth rate of the gravitational instability relative to the density
of the collapsing background is slower than that predicted by Jeans’ original analysis. This
flaw has come to be known as the “Jeans swindle”.

6.6.2 The Jeans Mass from the Virial Theorem

We can also derive the Jeans mass using the Virial theorem. Like the condition of hydrostatic
equilibrium, the Virial theorem describes a system in equilibrium. If the kinetic energy of
a system is K and the gravitational potential energy is U , the simplest incarnation of the
Virial theorem says that 2K + U = 0.

Each particle in gas cloud has kinetic energy, E = 3/2kT , so the total kinetic energy K =
ΣN

i Ei = 3/2NkT , where N is the number of particles.

For an isothermal sphere,

U = −3

5

GM2

R
, (6.65)

so

3NkT = −3

5

GM2

R
. (6.66)

We can replace N =M/µ , with µ the mass per particle, and R = (3M/4πρ)1/3 to get

MJ =

(
5kT

Gµ

)3/2(
3

4πρ

)1/2

(6.67)

The same as before!

6.6.3 The Jeans Mass from the Fluid Equations [Draine Chapter
41, but following Harvard ISM notes here]

Start with the basic hydro equations (conservation of mass and momentum, plus Poisson’s
equation for the gravitational potential):

∂ρ

∂t
+∇ · (ρv⃗) = 0 [Conservation of mass] (6.68)

∂v

∂t
+ (v⃗ · ∇)v⃗ = −1

ρ
∇P −∇Φ [Conservation of momentum] (6.69)

∇2Φ = 4πGρ [Poisson′s Equation for the Gravitational Potential] . (6.70)

Φ is the gravitational potential.

Consider an equilibrium solution ρ0(r⃗), P0(r⃗), etc such that time derivatives are zero. Let’s
perturb that solution slightly, and analyze when that perturbation grows unstably: v⃗ =
v⃗0 + v⃗1, ρ = ρ0 + ρ1, P = P0 + P1,Φ = Φ0 + Φ1.
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The linear hydro equations, to first order in the perturbations (getting rid of products of
perturbed quantities), are

∂ρ1
∂t

+ v⃗0 · ∇ρ1 + v⃗1 · ∇ρ0 = −ρ1∇ · v⃗0 − ρ0∇ · v⃗1 [Perturbed conservation of mass] (6.71)

∂v1
∂t

+(v⃗0 ·∇)v⃗1+(v⃗1 ·∇)v⃗0 =
ρ1
ρ20

∇P0−
1

ρ0
∇P1−∇Φ1 [Perturbed conservation of momentum]

(6.72)
∇2Φ1 = 4πGρ1 [Perturbed Poisson′s Equation] . (6.73)

For an isothermal gas, the equation of state is P = ρc2s, where cs is the isothermal sound
speed. Then, the momentum becomes

∂v⃗1
∂t

+ (v⃗0 · ∇)v⃗1 + (v⃗1 · ∇)v⃗0 = −c2s∇(
ρ1
ρ0

)−∇Φ1 (6.74)

Jeans took these equations and added:
Uniform density to start with (∇ρ0 = 0)
Stationary gas (v0 = 0)
Gradient-free equilibrium potential ∇Φ0 = 0)
Then, the solution becomes (after taking divergence of above equation, the momentum
equation)

∂2ρ1
∂t2

= c2s∇2ρ1 + (4πGρ0)ρ1 (6.75)

Now consider plane wave perturbations

ρ1 ∝ exp(i(k⃗ · r⃗)− ωt) (6.76)

ω2 = k2c2s − 4πGρ0 (6.77)

Define k2J = 4πGρ0/c
2
s, so ω

2 = (k2−k2J)c2s. ω is real IFF k > kJ . Otherwise, ω is imaginary,
and there is exponential growth of the instability. This then leads to a Jeans Length:

λJ = 2π/kJ =

(
πc2s
Gρ0

)1/2

(6.78)

This is exactly what we had before! Converting the Jeans length into a radius (assuming a
sphere) yields

MJ = 0.32M⊙

(
T

10K

)3/2(
mH

µ

)3/2(
106 cm−3

nH

)1/2

(6.79)

Let’s plug in values for a dense core: T = 10 K, µ = 2.33 amu, nH = 2 × 105 cm−3. This
yields MJ = 0.2 M⊙. If we instead plug in numbers appropriate for the mean conditions in
a GMC, T = 50 K, µ = 2.33 amu, nH = 200 cm−3, we get MJ = 70 M⊙.
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Note that, once gravitational collapse and heating set in, our isothermal sphere assumptions
are no longer valid.

6.6.4 Fragmentation

Of course this is a simplification – a single cloud does not collapse down to r=0. What
happens to complicate the collapse? As the cloud collapse, density rises. Since the collapse
is isothermal, a rising density means the Jeans mass of the cloud is falling, so small pieces
of the cloud start to collapse on their own. A rising density also means a declining free fall
time, so these small dense clumps collapse faster than the overall cloud.

Instead of one giant cloud undergoing a monolithic collapse, the cloud fragments into small
collapsing pieces. So what stops this fragmentation? As the density rises, the opacity rises.
At some point during the collapse and fragmentation process, the opacity rises high enough
that the energy created during the collapse is absorbed within the star itself – it begins to
heat up. Since the energy is not lost from the cloud, we call this an adiabatic collapse.
Higher temperature means higher pressures (the ideal gas law), which halt the free collapse
of the star. Since the cloud absorbs all the gravitational energy of collapse, it heats up, and
it starts to act like a blackbody.

At what mass does this happen? We can balance the rate of energy loss through gravitational
collapse to the rate at which the cloud radiates blackbody energy, and, solving for the mass,
we find M ≈ M⊙. In other words, collapse halts when the fragment masses reach star-like
masses.

6.6.5 Bonner-Ebert Spheres [Draine 41.3.1]

In a more realistic scenario, the density is centrally peaked. In this case, the gravitational
energy is

U = −3

5
a
GM2

R
, (6.80)

where a > 1 for centrally peaked density profiles. Draine mentions Mouschovias & Spitzer
(1976) find a ≈ 1.67 for numerical models of clouds on the verge of collapse.

In our above consideration of the Virial theorem, we neglected external pressure and magnetic
energy. If we consider the former, with the above modification to the gravitational potential,
we arrive at the “Bonner-Ebert mass” (Bonner 1956; Ebert 1957):

MBE(p0) =
225

32
√
5π

c4s
(aG)3/2

1
√
p
0

= 0.26

(
T

10 K

)2(
106 cm−3 K

p0/k

)1/2

M⊙ (6.81)

Remember how we said that the Jeans mass neglected some rather important things? Well,
the Bonner-Ebert mass is basically the same as the Jeans mass, MBE ≈ 1.18MJ . The 18%
change is due to the fact that the cloud itself affects the hydrostatic equilibrium assumption
before.
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Given the typical temperature and pressures of molecular clouds, the Bonner-Ebert mass is
about a Solar mass, so it is probably no surprise that this is the peak of the IMF.

Of course we still neglect the magnetic fields. The magnetic energies are similar to the kinetic
energies, and so can contribute to the pressure. See Draine for a complete treatment.

6.6.6 Formation of Actual Stars

During the formation of stars, cores more or less free-fall collapse. The free fall time depends
inversely on the density, so the central part collapses first, then the outer parts. What would
provide resistance? [Pressure of course!] What would pressure be unimportant? [Cooling
from molecular lines!]. This ”cooling” of course releases energy that we can detect. This
energy peaks in the sub-millimeter to far-infrared.

Class 0, I, II, and III Protostars [Draine 42.2]

We classify protostars based on their spectral index. We used spectral indices in the radio
before to distinguish between thermal (free-free) and non-thermal (synchrotron) emission.
Here, the spectral index is computed in infrared bands, and is used to distinguish young
from old protostars.

The earliest protostars will be cold. Their spectral energy distributions (SEDs) will therefore
peak at longer wavelengths. We see emission from the disk surrounding the protostar, and
also from the protostar itself. Whether we see emission from the disk or the protostar depends
on the disk inclination angle and the evolutionary state - since the disk will dissipate with
time.

The spectral index is sensitive to this:

α =
d log(λFλ)

d log λ
, (6.82)

or νFν ∝ ν−α. The classes are:
Class 0: objects are so heavily obscured that their spectra peak at wavelengths long-ward
of 100µm. Observationally, we typically do not even see Class 0 sources a mid-infrared
wavelengths - we need far-infrared or sub-millimetric (peak) observations. Typical ages a
few 104 yr.
Class I: More power radiated near 10µm compared to 2µm. This is the main accretion
phase. Takes few 105 yr.
Class II: Still have accretion disks. This is the classic “T-Tauri” phase (“Herbig-Haro”
objects are the higher mass versions). Takes few 106 years.
Class III: The accretion disks are now weak or absent. Takes a 10s of 106 years (faster for
high mass stars).

A little terminology: The pre-main sequence (PMS) is before the main sequence! The zero-
age main sequence (ZAMS) is when the star just reaches the main sequence, after the Class
III phase.
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Figure 6.6: Star classes.

Figure 6.7: The stellar tracks on the H-R diagram for pre-main sequence stars.
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Figure 6.8: Left: Kennicutt-Schmidt relation for various galaxies. Right: Kennicutt-Schmidt-
like relation looking at the far-infrared luminosity (a measure of star formation) versus the
HCN luminosity (a measure of dense gas yet to form stars).

The Schmitt-Kennicutt Law

Our Galaxy is making stars at a rate of about one Solar mass per year. The Galaxy is
transforming molecular clouds into stars. If it were transforming all the molecular mass into
stars, is would be making about 200 Solar masses of stars per year. It is not because of
course most of the mass of GMCs is not undergoing gravitational collapse, and even the
mass that is collapsing is not all going in to a protostar - it is a very inefficient process.

Schmidt (1959) proposed that the star formation rate (SFR) should vary as a power of the
local density ρ. Because the density is difficult to determine, Kennicutt (1998) proposed
that the surface density star formation rate should vary as the surface mass density. Indeed
it is! The Schmidt-Kennicutt law is remarkable in that it holds for low star formation and
high star formation (starburst) galaxies.

The issue with the Schmidt-Kennicutt law is that we need some way to trace the star
formation rate. All manner of methods have been used, from [NII] 205µm emission, to free-
free emission, to a census of stars, etc. Observationally, it has been found that the surface
density star formation rate varies as the star formation rate to the 1.4th power:

ΣSFR = (2.5± 0.7)× 10−4

(
Σ

1M⊙pc−2

)1.4±0.15

(6.83)


