ASTR705 ISM

HW #7

Due Wednesday, 4/5 in class

- 1) Consider an electron in an H I cloud with $n_H = 30 \text{ cm}^{-3}$, T = 100 K, $n(\text{H}^+) = 0.005 \text{ cm}^{-3}$, $n(\text{C}^+) = 0.005 \text{ cm}^{-3}$, and $n_e = 0.01 \text{ cm}^{-3}$.
 - a) What is the probability per unit time for a given proton to radiatively recombine with an electron?
 - b) What is the probability per unit time for a given C⁺ ion to radiatively recombine with an electron?
- 2) Suppose that an electron recombines into the $n=4, \ell=3$ (4f) level of hydrogen.
 - a) What is the probability that an $H\alpha$ photon will be emitted during the radiative cascade down to the ground state?
 - b) What is the probability for $H\beta$?
 - c) What is the radiative recombination rate into all levels higher in energy than 4f for Case A and Case B recombination?
- 3) The $12.8 \,\mu\mathrm{m}$ Ne⁺ line is caused by the $^2\mathrm{P}_{1/2}$ to $^2\mathrm{P}_{3/2}$ transition.
 - a) What is the collisional excitation (not ionization) and de-excitation rate of this transition? The units should be $cm^3 s^{-1}$. You may have to assume a temperature.
 - b) What is the ratio of Ne⁺ in the upper state compared to the lower state?
- 4) Under what conditions are Case A and Case B recombination appropriate? I'm looking for numbers here, not just general arguments!